加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

《课标解读》第六章  关于《标准》中的10个核心概念(二)

(2015-04-07 09:30:14)
分类: 前沿聚焦

《课标解读》第六章  关于《标准》中的10个核心概念(二)

 

稿源:2011版《义务教育数学课程标准解读》

作者:2011版课标解读专家组

 

 

    (续上) 

 

第六节  运算能力

运算是数学的重要内容,在义务教育阶段的数学课程的各个学段中,运算都占有很大的比重。学生在学习数学的过程中,要花费较多的时间和精力,学习和掌握关于各种运算的知识及技能。《标准》在学段目标的“知识技能”部分,对各学段运算分别提出了明确的要求:

第一学段:经历从日常生活中抽象出数的过程,理解万以内数的意义,初步认识分数和小数;理解常见的量;体会四则运算的意义,掌握必要的运算技能,能准确进行运算;在具体情境中,能选择适当的单位进行简单的估算。

第二学段:体验从具体情境中抽象出数的过程,认识万以上的数;理解分数、小数、百分数的意义,了解负数;掌握必要的运算技能;理解估算的意义;能用方程表示简单的数量关系,能解简单的方程。

第三学段:体验从具体情境中抽象出数学符号的过程,理解有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,掌握用代数式、方程、不等式、函数进行表述的方法。

运算不仅是数学课程中“数与代数”的重要内容, “图形与几何”,“统计与概率”, “综合与实践”也都与运算有着密切的联系,成为不可或缺的内容。

《标准》所提出的课程目标中的很多方面,如:获得“四基”(基本知识、基本技能、基本思想、基本活动经验);运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力等,都与运算的学习有关,运算对实现课程目标发挥着重要的支撑作用。

一、对运算能力的认识

根据一定的数学概念、法则和定理,由一些已知量通过计算得出确定结果的过程,称为运算。能够按照一定的程序与步骤进行运算,称为运算技能。不仅会根据法则、公式等正确地进行运算,而且理解运算的算理,能够根据题目条件寻求正确的运算途径,称为运算能力。

《标准》指出:运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。

运算能力并非一种单一的、孤立的数学能力,而是运算技能与逻辑思维等的有机整合。在实施运算分析和解决问题的过程中,要力求做到善于分析运算条件,探究运算方向,选择运算方法,设计运算程序,使运算符合算理,合理简捷。换言之,运算能力不仅是一种数学的操作能力,更是一种数学的思维能力。

《标准》是在总目标的四个方面之一的“数学思考”中提出运算能力的:“建立数感、符号意识和空间观念,初步形成几何直观和运算能力,发展形象思维和抽象思维。”这说明运算能力是数学思考的重要内涵。不仅如此,运算能力对《标准》在总目标中提出的其他三个方面——知识技能、问题解决和情感态度的目标的整体实现,同样是不可缺少的基本条件。

二、运算能力的特征 

运算能力是在不断地运用数学概念、法则、公式,经过一定数量的练习而逐步形成的。要使学生通过各种运算和对代数式、方程、不等式的变形以及重要公式的推导,通过用概念、法则、性质进行简单的推理,发展逻辑思维能力。

运算的正确、灵活、合理和简捷是运算能力的主要特征。

首先要保证运算的正确,为此,必须要正确理解相关的概念、法则、公式和定理等数学知识,明确意识到实施运算的依据。如前所述,在每一学段,《标准》对运算提出的要求,都是和相关的数学知识一并提出的。

然后,在适度训练,逐步熟悉的基础上,清楚地意识实施运算中的算理。不断总结正反两方面的经验和教训,逐渐减少在实施运算中,思考概念、法则公式等的时间和精力,提高运算的熟练程度,以求运算的顺畅,力求避免失误。

一题多解和多题一解出现在运算过程中是十分普遍的,即一般性与特殊性往往同时出现在实施运算的过程中,一题多解体现了运算的灵活性,多题一解则体现了运算的普适性。一题多解和多题一解的交替出现,相互比较,循环往复,不断优化,促使学生越来越感悟到:实施运算,解决问题,不仅要正确,而且要灵活、合理和简洁。

要充分重视估算。《标准》在每个学段的学段目标和内容标准中,都强调了估算,提出了具体的要求,配备了一定数量的案例。

第一学段:在具体情境中,能选择适当的单位进行简单的估算。在生活情境中感受大数的意义,并能进行估计(案例3);能结合具体情境,选择适当的单位进行简单估算,体会估算在生活中的作用(案例6)。第二学段:理解估算的意义。结合现实情境感受大数的意义,并能进行估计(案例23);在解决问题的过程中,能选择合适的方法进行估算(案例26,案例27);会用方格纸估计不规则图形的面积(案例33)。第三学段:掌握必要的运算(包括估算)技能;能用有理数估计一个无理数的大致范围(案例47);经历估计方程解的过程(案例52);会利用二次函数的图像求一元二次方程的近似解。

估算是重要的运算技能,进行估算需要掌握一定的方法,需要积累一定的经验,需要避免出现过大的误差;估算又是运算能力的特征之一,进行估算需要经过符合逻辑的思考,需要有一定的依据,需要使估算的结果尽量接近实际情境,能对实际问题做出合理的解释。

运算能力的形成不是一蹴而就的,运算能力的发展总是从简单到复杂,从低级到高级,从具体到抽象,有层次地发展起来的。因此,在实际教学过程中,既不能让学生的运算能力在已有的水平上停滞不前,也不能超越知识的内容和其他能力水平孤立地发展运算能力。应该贯穿于师生共同参与数学教学活动的全过程中,并体现发展的适度性、层次性和阶段性。

适度性:运算能力需要经过多次反复训练,螺旋上升逐步形成,在这一过程中,安排一定数量的练习,完成一定数量的习题是必不可少的。题量过少,训练不足,难以形成技能,更难以形成能力;然而题量过多,搞成题海战术,反而会使学生产生厌学情绪,适得其反。目前,学生的课业负担过重,数学课程的作业量过大是重要原因之一。把握学习内容的要求,进行适量训练,科学安排,应是发展运算能力的要求。

层次性:安排一定数量的练习,完成一定数量的习题对形成运算能力不可缺少,但训练的难度一定要适当,要从数学教学的全局出发,合理调控。义务教育的主要任务是打基础,数学尤其如此,训练题要有一定的数量,更要有合理的质量。以二次根式为例,如果没有最简二次根式的概念,没有分母有理化的要求,就会使教学无所适从,既造成教学的困惑,又影响高中阶段的进一步学习。

 

[1] 史宁中.数学思想概论——数量与数量关系的抽象[M].东北师范大学出版社.20086.147

[2] 史宁中.数学思想概论——数量与数量关系的抽象[M].东北师范大学出版社.20086.143

 

[3] 史宁中.数学思想概论——数量与数量关系的抽象[M].东北师范大学出版社.20086.143

 

安排为训练题,那就过于繁琐,过分强调技巧,增加了负担,对今后学习的作用也不大,应当避免。由此可见,层次性也是发展运算能力的要求。

阶段性:由前可知,《标准》对运算和运算能力的要求是分学段提出的,每个学段的要求都体现了一定的学段特征,力求符合学生的认知规律,这是完全必要的,适宜的。这也表明,阶段性也应是发展运算能力的要求。

三、运算能力的培养与发展

运算能力的培养与发展是一个长期的过程,首先伴随着数学知识的积累和深化。正确理解相关的数学概念,是逐步形成运算技能,发展运算能力的前提。运算能力的培养与发展自然包括运算技能的逐步提高,而更应引起关注的是运算思维素质的提升和发展。在义务教育阶段,运算能力的培养、发展要经历如下过程:

1. 由具体到抽象 

第一学段理解万以内的数,初步认识小数和分数,初步学习整数的四则运算,以及简单的分数和小数的加减运算。第二学段认识万以上的数,进一步学习整数的四则运算(包括混合运算),小数和分数的四则运算(包括混合运算),了解并初步应用运算律。第三学段掌握有理数的加、减、乘、除、乘方及简单的混合运算;掌握合并同类项和去括号的法则,进行简单的整式减法、减法和乘法运算;利用乘法公式进行简单计算;进行简单的分式加、减、乘、除运算;了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算;解一元一次方程、可化为一元一次方程的分式方程;掌握代入消元法和加减消元法,解二元一次方程组;用配方法、公式法、因式分解法解数字系数的一元二次方程;解数字系数的一元一次不等式。

无论是学习和掌握数与式的运算,解方程和解不等式的运算,一开始总是和具体事物相联系的,以后逐步脱离具体事物,抽象成数与式,方程与不等式的运算。直至到高中阶段进行更为抽象的符号运算,如集合的交、并、补等运算,命题的或、且、非等运算。运算思维的抽象程度,是运算能力发展的主要特征之一。

2. 由法则到算理

学习和掌握数与式的运算,解方程和解不等式的运算,在反复操练,相互交流的过程中,不仅会逐步形成运算技能,还会引发对怎么算?怎样算的好?为什么要这样算?等一系列问题的思考,这是由法则到算理的思考,使运算从操作的层面提升到思维的层面,这是运算能力发展的重要内容。

《标准》规定了一系列与算理相关的内容。

第二学段:探索并了解运算律(加法的交换律和结合律、乘法的交换律和结合律、乘法对加法的分配律),会应用运算律进行一些简便运算。了解等式的性质,能用等式的性质解简单的方程。

第三学段:除了“理解有理数的运算律,能运用运算律简化运算”外,算理的内容和要求进一步强化,在学习方程解法之前,要求“掌握等式的基本性质”;在学习不等式解法之前,要求“探索不等式的基本性质”;为此,《标准》提供了案例53:小丽去文具店买铅笔和橡皮。铅笔每支0.5元,橡皮每块0.4元。小丽带了2元钱,能买几支铅笔、几块橡皮?在此案例中,不仅给出了详细的解题方案和过程,并指出:这是一个求整数解的不等式问题,并且问题是开放的,通过列表具体计算,有助于学生直观理解不等式。对于初中的学生,这个问题是生活常识,但希望学生能通过这个例子学会用数学的思维方式看待生活中的问题。在一元二次方程的内容中,《标准》不仅设置了“能用配方法、公式法、因式分解法解数字系数的一元二次方程”,而且增加了“会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等”;“*了解一元二次方程的根与系数的关系”等内容,表明不仅要学习和掌握解一元二次方程的运算方法,更要思考和领悟解一元二次方程的算理。

3. 由常量到变量

函数在第三学段是重要的内容。函数概念的引入,运算对象从常量提升到变量。运算的内容更加丰富多彩,《标准》中不仅有“能确定简单实际问题中函数自变量的取值范围,并会求出函数值”;“会利用待定系数法确定一次函数的表达式”;“会用配方法将数字系数的二次函数的表达式化为 的形式,并能由此得到二次函数图像的顶点坐标”等直接进行运算的内容;还包括与运算密切相关的内容,如:“能结合图像对简单实际问题中的函数关系进行分析”;“用适当的函数表示法刻画简单实际问题中变量之间的关系”;“结合对函数关系的分析,能对变量的变化情况进行初步讨论”;“根据一次函数的图像和表达式 y = kx + b (k0)探索并理解k0k0时,图像的变化情况”;“能根据已知条件确定反比例函数的表达式”;“根据图像和表达式 y = (k0)探索并理解k0k0时,图像的变化情况”;“*知道给定不共线三点的坐标可以确定一个二次函数”。

由常量到变量,表明运算思维产生了新的飞跃,运算能力也发展到一个新的高度。

4. 由单向思维到逆向、多向思维

逆向思维是数学学习的一个特点。在第二学段,《标准》规定“在具体运算和解决简单实际问题的过程中,体会加与减、乘与除的互逆关系”。在第三学段,又增加了乘方与开放的互逆关系。到高中阶段,更有指数与对数,微分与积分等互逆关系。运算的互逆关系,是逆向思维的重要表现形式之一。

运算也是一种推理,在实施运算分析和解决问题的过程中,“由因导果”和“执果索因”的推理模式也是经常要用到的,表现为有效探索运算的条件与结论,已知与未知的相互联系及相互转化,思维方向是互逆的,更是相辅相成的。

在实施运算的过程中,还会遇到多因素的情况,各个因素相互联系,相互制约,又相辅相成,更加需要思考不同的思维方向,不同的解题思路和不同的解题方法,通过比较,加以择优选用。这是运算思维达到一个新的高度的重要标志,是运算能力的培养与发展的高级阶段。

由于思维定势的消极作用,逆向思维和多向思维的难度较大,在实施运算的过程中,对分析运算条件,探究运算方向,选择运算方法,设计运算程序等各个环节都要学生引导进行周密的思考,力求使运算符合算理,达到正确熟练,灵活多样,合理简洁,实现运算思维的优化及运算能力的逐步提高。

 

第七节 推理能力

 

推理在数学中具有重要的地位。诚如《标准》所指出的:“推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式”。学习数学就是要学习推理。具有一定的推理能力是培养学生数学素养的重要内容,也是数学课程和课堂教学的重要目标。

 

一、 对数学推理的认识

数学推理直接与命题有关。在数学中,我们随时会对思维对象作出一种断定。如:“ 是无理数”,“ 不是等腰三角形”。我们把这种对客观事物的情况有所肯定或否定的思维形式叫作判断。判断作为一种思维形式,与表示它的语句有密切关系。在数学中把表示判断的语句称为命题。而数学推理则是以一个或几个数学命题推出另一个未知命题的思维形式。

上述对数学推理的解释更多是基于形式逻辑的角度,如果从数学内部看,数学推理反映的是一种基本的数学思想,也是一种主要的数学方法。它与数学证明紧密关联,数学推理与证明共同构成了数学的最重要的基础。

 

二、《标准》中的推理能力

1.合情推理与演绎推理

推理能力在数学中是属于数学思考(思维)能力中的一种,因此《标准》在数学思考的目标表述中作了明确的要求,指出:要“发展合情推理和演绎推理能力”。合情推理是数学家乔治·波利亚对归纳推理、类比推理等或然性推理(即推理的结论不一定成立的推理)的特称。归纳推理是以个别(或特殊)的知识为前提,推出一般性知识为结论的推理。它的思维进程是从特殊到一般。按照它考虑的对象是否完全而又分为完全归纳推理和不完全归纳推理。由于完全归纳推理考查了推理前提中所有的对象或类,所以若前提成立,结论也一定成立,因此完全归纳推理不是或然的推理而是必然的推理。合情推理中的归纳推理一般指不完全归纳推理。

类比推理是由两个或两类思考对象在某些属性上的相同或相似,推出它所在另一属性也相同或相似的一种推理。它是从特殊到特殊的推理。如由分数类比分式,由分数基本性质得到分式基本性质;由二维空间的三角形类比三维空间的四面体,由二维空间的勾股定理得到三维空间的毕达哥拉斯定理等。类比推理也是一种或然性的推理。

而演绎推理是从已有的事实(包括定义、公理、定理等)确定的规则出发,得到某个具体结论的推理,它是必然性推理(即只要推理前提真,得到的结论一定真)。它的思维进程是从一般到特殊。他的基本形式是三段论。

2.合情推理与演绎推理功能不同,相辅相成

波利亚很早就注意到“数学有两个侧面,……用欧几里得方式提出来的数学是一门系统的演绎科学;但在创造过程中的数学却是实验性的归纳科学。”(波利亚《数学与猜想》),因此,与之相适应,应该有两类推理:用合情推理获得猜想,发现结论;用演绎推理验证猜想,证明结论。正如《标准》指出:“两种推理功能不同,相辅相成。”

在数学学习活动中,我们会经常遇到同时采用两种推理方式来求得问题解决的情形如这样一个例:

  探索过圆外一点所画的圆的两条切线的长有什么关系?

教学中可引导学生经历这样的的过程:

 

 

2)证明结论的正确性。如图2,连接 。因为 是⊙ 的切线,则 ,即 均为直角三角形。又因为         ,则 全等。于是有

   

这是通过演绎推理证明图形性质的过程。

由此可见,合情推理与演绎推理是相辅相成的两种推理形式,都是研究图形性质的有效工具。

在传统数学教学中,往往重演绎,轻归纳、类比,只满足于证明现成结论,学生很少经历探索结论、提出猜想的活动过程。而在数学中发现结论往往比证明结论更重要。《标准》提出培养合情推理能力,对培养学生的创新意识提供了支撑。

 

三、关于学生推理能力培养

在整个义务教育阶段,对学生推理能力的培养是内容学习和目标达成的一条主线,也是一个逐渐提升的长期过程。如下几个方面在教学中应该加以注意。

1.推理能力的发展应贯穿在整个数学的学习过程中

这是《标准》中提出的非常明确的要求。这里的“贯穿整个数学学习过程”应该有这样几层含义:其一,它应贯穿于整个数学课程的各个学习内容,即应包括数与代数、图形与几何、统计与概率及综合实践等所有领域内容。其二,它应贯穿于数学课堂教学的各种活动过程。如在概念教学中,让学生经历从特定对象的本质属性入手,抽象、概括形成概念的过程,并引导学生有条理表述概念定义;在命题教学中,引导学生分清条件、结论,把握条件、结论间的逻辑关系;在证明教学中,更要让学生遵循证明规则,通过数学推理、证明数学结论。其三,它也应贯穿于整个数学学习的环节,如预习、复习、课堂教学、自我练习、测验考试……,在所有的这些学习环节,逐步要求学生做到言必有据,合乎逻辑。当然,“贯穿整个数学学习过程”也应包括推理能力的培养应贯穿于三个学段,合理安排,循序渐进,协调发展。

2.通过多样化的活动,培养学生的推理能力

反思传统教学,对学生推理能力的培养往往被认为就是加强逻辑证明的训练,主要的形式就是通过习题演练以掌握更多的证明技巧。显然,这样的认识是带有局限性的。《标准》强调通过多样化的活动来培养学生的推理能力。如《标准》提出:“在观察、操作等活动中,能提出一些简单猜想”(一学段),“在观察、猜想、验证等活动中,发展合情推理能力”(二学段),“在多样化形式的数学活动中,发展合情推理与演绎推理的能力”(三学段)。教师要认真体会《标准》所提出的这些要求,针对学生推理能力的培养,在课堂教学中开拓出更加有效的、多样化的活动途径。

 

3.使学生多经历“猜想——证明”的问题探索过程

在“猜想——证明”的问题探索过程中,学生能亲身经历用合情推理发现结论、用演绎推理证明结论的完整推理过程,在过程中感悟数学基本思想,积累数学活动经验,这对于学生数学素养的提升极为有利。教师要善于对素材进行此类加工,引导学生多经历这样的活动。

例如,引导学生发现如下的运算规律:

15×15=1×2×100+25=225

25×25=2×3×100+25=625

35×35=3×4×100+25=1225

观察后,引导学生思考是否有一般性的结论呢?可以猜想:如果用字母a代表一个正整数,则有如下结论:

         (a×10+5)2= a( a+1)×100+25

    但这样的猜测是正确的吗?需要给出证明:

        

这是一个由具体数值计算到符号公式表达的过程,即由特殊到一般的过程。可以让学生感悟,有些问题是可以通过具体问题去得出结论,然后通过一般性证明来验证自己所发现结论的,这就是数学推理带给我们的乐趣。

 

 

第八节  模型思想

 

模型思想是此次修订标准新增的核心概念。尽管原标准在课程实施部分的“教学建议”中曾提到了“建立模型”一词,但数学模型、建模等概念并未出现在义务教育阶段课程目标及内容标准的文字表述之中。这次随着“模型思想”的列入,我们会看到关于数学模型的相关提法会在《标准》的多个部分出现。特别的,模型思想作为一种基本的数学思想更是会与目标、内容紧密关联。作为第一线教师应对《标准》中模型思想的含义及要求准确理解,并把这要求落实于课堂教学之中。

一、         对数学建模的认识

所谓数学模型,就是根据特定的研究目的,采用形式化的数学语言,去抽象地,概括地表征所研究对象的主要特征、关系所形成的一种数学结构。在义务教育阶段数学中,用字母、数字及其他数学符号建立起来的代数式、关系式、方程、函数、不等式,及各种图表、图形等都是数学模型。

这种结构有两个主要特点:其一,它是经过抽象舍去对象的一些非本质属性以后所形成的一种纯数学关系结构;其二,这种结构是借助数学符号来表示,并能进行数学推演的结构。对数学模型可以从两个层次上去理解:广义的理解是把那些凡是针对客观对象加以一级或多级抽象所得到的形式结构都视为客观对象的模型;狭义的理解是指针对特定现实问题或具体实物对象进行数学抽象所得到的数学模型。在中小学阶段数学中的数学模型一般指后者。

 

数学建模就是通过建立模型的方法来求得问题解决的数学活动过程。这一过程的步骤可用如下框图来体现:

 

上述步骤中最重要的是抽象成数学模型这一步骤。这些步骤反映的是一个相对严格的数学建模过程,义务教育阶段特别是小学的数学建模视具体课程内容要求,不一定完全经历所有的环节,这里有一个逐步提高的过程。

二、《标准》中模型思想的含义及要求

1.模型思想是一种数学的基本思想

在原课标中,“模型”一词出现在第三学段的教学建议之中,其提法是“教学应结合具体的数学内容采用‘问题情境——建立模型——解释、应用与拓展’的模式展开,让学生经历知识的形成与应用的过程,从而更好理解数学知识的意义……”。显然,在这里数学建模及其过程更多地被看成是一种教学活动过程和模式,强调的是其教学上的意义。修订后的《标准》将数学基本思想作为“四基”之一提出,必然引出这样的问题:数学基本思想主要指哪些思想呢?现在模型思想作为10个核心概念中唯一一个以“思想”指称的概念,这实际上已经明示它是数学基本思想之一。 史宁中教授在《数学思想概论》中提出这样的观点:“数学发展所依赖的思想在本质上有三个:抽象、推理、模型,……通过抽象,在现实生活中得到数学的概念和运算法则,通过推理得到数学的发展,然后通过模型建立数学与外部世界的联系”(史宁中,《数学思想概论》第一辑,东北师范大学出版社,2008.6,第一页)。从数学产生、数学内部发展、数学外部关联三个维度上概括了对数学发展影响最大的三个重要思想。

作为中小学课程中的模型思想应该在数学本质意义上给学生以感悟,以形成正确的数学态度。正因为如此,《标准》指出:“模型思想的建立是学生体会和理解数学与外部世界联系的基本途径”。它鲜明地表述了这样的意义:建立模型思想的本质就是使学生体会和理解数学与外部世界的联系,而且它也是实现上述目的的基本途径。

数学与外部世界的联系,是数学发展到今天在其自身的舞台上最精彩的表演。从第四章第一节的分析可知,今日之数学已突破了传统的应用范围而向人类几乎所有的知识领域渗透,而各门科学向着“数学化”发展,也成为当今科技发展的一个重要趋势。这里的“渗透”、“数学化”说到底就是数学模型的运用,作为基础教育的数学不能不关注数学发展的这一特点。

从当前各国数学课程改革来看,通过数学建模来建立数学与外部世界的联系也成为共同关注点。如美国课程标准将“数学联系”作为重要目标,“认识到并能应用数学于数学以外的情境中”是数学联系的主要内涵。该标准还强调,各种水平的数学学习,应包括有机会解决在数学以外的情境中产生的问题,既可与其他学科建立联系,又可与学生的日常生活相联系。

在加强数学与外界联系方面,《标准》在总目标中也明确提出:“体会数学知识之间、数学与其他学科之间、数学与生活之间的联系”。标准修改后的这个新提法与模型思想这一要求是一致的和相互呼应的。

2.关于建立和求解模型的过程要求

前面我们已介绍了数学建模的一般步骤。《标准》以义务教育数学课程的实际情况出发,将这一过程进一步简化为这样三个环节:首先是“从现实生活或具体情境中抽象数学问题”。这说明发现和提出问题是数学建模的起点。然后“用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律”。在这一步中,学生要通过观察、分析、抽象、概括、选择、判断等等数学活动,完成模式抽象,得到模型。这是建模最重要的一个环节。最后,通过模型去求出结果,并用此结果去解释、讨论它在现实问题中的意义。显然,数学建模过程可以使学生在多方面得到培养而不只是知识、技能,更有思想、方法,也有经验积累,其情感态度(如兴趣、自信心、科学态度等)也会得到培养。

3.模型思想体现在《标准》的许多方面

正因为模型思想从本质意义上体现着数学的基本思想,所以它渗透于《标准》的许多方面。比如,《标准》中有如下提法:“经历数与代数的抽象、运算与建模过程”(数与代数总目标);“通过用代数式、方程、不等式、函数等表述数量关系的过程,体会模型思想”,“体会方程是刻画现实世界数量关系的有效模型”(三学段目标);“结合实际情境,经历设计解决具体问题的方案,并加以实施的过程,体验建立模型、解决问题的过程”(“ 综合与实践”内容标准)等等,除此之外,在教学实施、教材编写、评价、案例等部分都有关于模型思想的具体要求,在课程实施中要注意这一特点。

一、       模型思想的培养

1.模型思想需要教师在教学中逐步渗透和引导学生不断感悟

模型思想作为一种思想要真正使学生有所感悟需要经历一个长期的过程,在这一过程中,学生总是从相对简单到相对复杂,相对具体到相对抽象,逐步积累经验,掌握建模方法,逐步形成运用模型去进行数学思维的习惯。教师在教学中要注意根据学生的年龄特征和不同学段的要求,逐步渗透模型思想。比如在一学段,可以引导学生经历从现实情境中抽象出数、简单几何体和平面图形的过程和简单数据收集、整理的过程,使学生能学会用适当的符号来表示这些现实情境中的简单现象,提出一些力所能及的数学问题;在二学段,通过一些具体问题,引导学生通过观察分析抽象出更为一般的模式表达,如用字母表示有关的运算律和运算性质,总结出路程、速度、时间,单价、数量、总价等关系式;在三学段,主要是结合相关概念学习,引导学生运用函数、不等式、方程、方程组、几何图形、统计表格等分析表达现实问题,解决现实问题。

总之,模型思想的渗透是多方位的。模型思想的感悟应该蕴含于概念、命题、公式、法则的教学之中,并与数感、符号感、空间观念等的培养紧密结合。模型思想的建立是一个循序渐进的过程。

2.使学生经历“问题情境——建立模型——求解验证”的数学活动过程

“问题情境——建立模型——求解验证”的数学活动过程体现了《标准》中模型思想的基本要求,也有利于学生在过程中理解、掌握有关知识、技能,积累数学活动经验,感悟模型思想的本质。这一过程更有利于学生去发现、提出、分析、解决问题,培养创新意识。

 

上述活动过程完全可以结合相关课程内容有机进行。比如,关于方程的教学,过去我们是从概念到概念,强调的是方程定义、类型、解法、同解性讨论等等比较“纯粹”的知识、技能,而现在,我们可以让学生从丰富多样的现实具体问题中,抽象出“方程”这个模型,从而求解具体问题。其过程如下:

 

3.通过数学建模改善学习方式

 

数学建模不同于单纯的数学解题,它是一个综合性的过程。这一过程所具有的问题性、活动性、过程性、搜索性等特点给学生数学学习方式的改善带来了很大的空间。如下一些学习方式都可以在数学建模中尝试:(1)小课题学习方式。让学生自主确定数学建模课题,设定课题研究计划,完成以后最后提交课题研究报告。基于数学建模的小课题研究针对不同的年龄段应该有不同的层次和不同的水平,但不管何种层次和水平,关键是要引导学生根据自己的生活经验和对现实情境的观察,提出研究课题。(2)协作式学习方式。在数学建模中可以小组为单位在组内进行合理分工,协同作战,培养学生的合作交流能力。(3)开放式学习方式。这里的开放是多种意义的,如打破课内课外界限,走入社会,进行数学调查;充分利用网络资源,收集建模有用信息;鼓励对统一问题的不同建模方式等等。(4)信息技术环境中的学习方式。充分利用计算机的计算功能、图形实现功能、特有软件包的应用功能等,寻求建模途径,提高数学建模的有效性。比如对“足球比赛中球员如何选择最佳射门位置?”这样的问题,完全可以借助计算机模拟球员进攻路线,通过“几何画板”的动态模拟功能构建几何模型,直观显示(如图):最佳位置应该是球员进攻路线l上对球门左右门框(A B)张角最大的那个点p,即p为切点时,APB最大,当然这一通过直观得到的结论还需运用相关知识予以证明。

 

第九节   应用意识

《标准》在课程目标中指出:要使学生“初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,增强应用意识,提高实践能力。”增强应用意识作为数学课程的重要目标应该引起第一线老师的重视,并应通过有效的措施在课堂教学中予以落实。

一、培养学生应用意识的意义

通过第四章的分析我们已知,现代数学发展的一个典型特征就是数学应用的空前发展,许多抽象的数学理论得到了应用,数学向其他学科渗透又形成了许多新的数学交叉学科,就是一些过去与数学无缘的人文学科也与数学产生了联系,各门科学向着“数学化”发展,已成为当今科技发展的一个趋势。数学在渗透到各门学科领域的同时,它也逐渐渗透到了人们生活的各个角落:面积体积、对称、百分数平均数比例、角度、概率等成为社会生活中很常见的名词;人口增长率、生产统计图、股票趋势图等不断出现在报刊电视等大众信息传播媒介中;而象储蓄债券保险、面积、体积计算(估算)、购物决策等更是成为人们在生活中不可回避的现实问题。现代社会比以往任何时候都更需要公民运用数学去面对生活、工作中的问题。学校数学课程需要对数学的这种发展态势和时代要求作出积极的反应。

长期以来,在数学教学中,数学应用意识的失落是一种普遍存在的现象。特别是为了应试的需要,在数学教学中注重的是技能、技巧的训练,数学课堂上只讲抽象的数学公式和结论,不讲数学知识的实际来源和应用方法,“掐头去尾烧中段”的现象仍然存在。尽管目前已在关注加强数学应用,但真正落实到目标上还有较大差距,这是我国数学课程改革应该正视的问题。加强数学应用,不是简单地增加几个应用题,也不只是追求实际问题解决的工具价值,它事实上体现了数学更加本质的东西。数学应用是认识数学、体验数学、形成正确数学观的过程,这一过程以数学课程作载体,追求的目标不仅是知识的获得和问题的解决,更重要的是使学生通过这一过程学会数学地思考,掌握数学思想方法,感悟数学的精神并形成正确的数学态度。从根本上看,它追求的是学生数学素养的提升和创新精神、实践能力的培养、发展。

 

二、《标准》中应用意识的含义

意识在心理学上是一种心理倾向。良好的意识重在自觉性、自主性和选择性,它反映一个人在认识事物对象过程中,其思维的自觉、独立、批判、求异和创造的品质。基于这样的理解,数学应用意识就是一种用数学的眼光、从数学的角度观察、分析周围生活中问题的积极的心理倾向和思维反应。《标准》指出数学应用意识的含义主要体现在以下两个方面:

1. 有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题

这里实际指的是主动应用数学知识的意识,这种意识的指向是“数学知识现实化”。学生能够有意识地、积极主动地应用数学知识去分析、解决现实世界中的现象和问题,这对学生实践能力和创新精神的培养具有重要意义。仔细分析这里有两层意思:一是有意识利用数学的概念、原理和方法去解释现实世界中的诸多现象。学生在日常生活中会遇到许多客观存在的现象,当遇到这样的一些现象时,学生应该具有一定的数学敏感性,要善于从数学的角度、运用数学的知识去解释这些现象,获得对现象本质的理解。例如,电视台播放某大奖赛实况,总要去掉一个最高分,一个最低分,然后求其它评分的平均数,这是为什么呢?学生学了统计中的平均数、中位数等知识后,他能有意识地去运用这些知识去分析这一现象,并能给出合理的解释:“去掉最高分、最低分,求其他分数的平均数,这样既可以降低极端分数的影响,又可以避免给中间几个数据太大的权重,合理地分解所有评分者的评分误差”。再如,《标准》第二学段的一个例子“阅读在报纸或者杂志上发表的有统计图的文章,用自己的语言说明统计图所表达的意思”,这事实上也体现了数学应用意识培养的要求;二是,有意识地运用数学知识去解决现实生活中的问题。学生学习某一数学知识后,应主动思考应用这一数学知识我能解决现实生活中的什么样的问题,这样就可以把理论与实际相联系了。例如,学生学习了“两点之间线段最短”这一数学知识后,主动思考能解决什么样的实现问题呢?善于思考的同学就会发现,我能解决“在两个汽车站之间,怎样设加油站的位置,使得到两个汽车站的距离最小?”这一实际问题。学数学的目的就是用数学,这一点很重要。

2. 认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决

这个方面实际指的是对现实生活主动进行数学抽象的一种意识,它的目标是“现实问题数学化”。这一要求一方面体现为要让学生认识到现实生活中处处有数学,数学就在我们的身边,现实生活中蕴涵着大量与数量和图形有关的问题,如:储蓄、保险、选举、股票、打折销售等等;另一方面体现为认识到现实生活中的大量问题都可以抽象成数学的问题,用数学的方法予以解决。这也即是数学建模的思想。例如,某商场搞打折销售活动,有两种活动方案,一种是满200元省50元,另一种是直接打8折,如果你想买一种商品,请你制定你的购买方案?对于这一打折销售问题,学生能意识到可以抽象为数学中的函数的问题,然后用函数的相关知识予以解决。这样,可以让学生从认识上建立对数学应用的正确理解,这是很有必要的。

一、应用意识的培养

正因为数学应用意识属于“意识”范畴,处于“隐性”状态,这就决定了数学应用意识的培养具有长期性,我们不能期望在一两次解决问题中就能培养起学生的数学应用意识。因此,在义务教育的各个学段都应不失时机地激发学生的应用意识,促进应用意识的培养。

1.注重知识的来龙去脉

前苏联数学教育家斯托利亚尔认为,一个完整的数学活动可分为经验材料的数学组织化、数学材料的逻辑组织化、数学理论的应用三个阶段(斯托利亚尔,《数学教育学》)。传统数学教学往往只注重中间环节,而忽视了其他阶段。要培养学生的应用意识,不能只“烧中段”,还要“顾两头”,即要注重知识的来龙去脉,也即让学生知道数学知识“从哪里来”,又会“到哪里去”。

要让学生知道数学知识“从哪里来”,可从以下两方面努力。第一,提供数学知识产生的背景材料。在数学教学中,应尽可能结合数学课程的内容,介绍一些对数学知识发生、发展紧密关联的数学史资料及实际问题资料。例如,在数与代数部分,向学生穿插介绍代数及代数语言的历史、正负数和无理数的历史、一些重要符号和重要概念的起源与演变;在统计与概率部分,介绍一些有关概率论的起源、掷硬币试验、布丰投针问题与几何概率等历史事实。第二,呈现数学知识的形成过程。现实生活中蕴含着大量的数学信息,教师可结合现实生活或者具体情境,给学生呈现数学知识的形成过程,如“多项式与多项式相乘”的教学,可设置如下情境:学校操场的长、宽分别为m米、a米,由于教学需要,长、宽分别增加n米、b米,你能用两种方法表示扩大后的操场面积吗?学生画图后可得出(m+n)(a+b)ma+mb+na+nb两种表示形式。教师再引导学生得出公式(m+n)(a+b)=ma+mb+na+nb。如此,在提高学生学习数学的兴趣的同时,也会让学生感觉到多项式乘法的应用价值。

要让学生知道数学知识“到哪里去”,就要反映数学知识的应用过程。义务教育阶段的许多数学知识,如概念的产生、计算法则的由来、几何形体的特征及有关公式等,无不渗透着数学在现代生产、生活和科技中的应用。例如,让学生用平方的概念探索细胞分裂(1个分裂成2个,再逐步分裂成4816 …)的次数与个数之间的关系,使学生真正体会到“数学有用、要用数学”。

以上事实上分别展现了当前数学知识学习中,应该关注的“知识背景—知识形成—揭示联系”的过程和“问题情境─建立模型─求解验证”的过程,这样的过程更有利于提高发现和提出问题的能力、分析和解决问题的能力,对学生应用意识的培养大有裨益。

2.在整个数学教育的过程中都应该培养学生的应用意识

数学应用意识的培养应贯穿于整个数学教育全过程中。具体而言,在课程目标定位、课程内容设置、教学设计、课堂教学、课后作业、学习评价等数学教育诸环节都应关注应用意识的培养。

首先,应将培养学生应用意识作为数学课程的重要目标,贯穿于数与代数、图形与几何、统计与概率及综合实践等所有领域内容的数学课程中;其次,在教学设计过程中,应联系学生实际和社会生活现实,合理地解读教材、拓展教材,积累素材,研制、开发、生成课程资源;第三,课堂教学的过程中,应同时关注生活情境数学化和数学问题生活化;第四,将定量评价与定性评价相结合,适当设计一定的具有现实生活背景的问题和一些实际操作的内容,既要关注学生应用意识指向的广阔性(能够给出多少合理的数学解答;能发现多少包含数学知识的各种不同问题),又要关注应用意识的主动性(面对实际问题时,能否主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;面对新的数学知识时,能否主动地寻找实际背景,并探索其应用的价值)。

 

3.综合实践活动是培养应用意识很好的载体。

综合实践活动有别于学习具体知识的探索活动,更有别于课堂上教师的直接讲授,是一类以问题为载体、以学生自主参与为主的学习活动,其教学目标是帮助学生积累数学活动经验、培养学生应用意识与创新意识。

 综合实践活动是培养学生应用意识的重要和有效的载体。综合实践活动兼顾“综合性”与“实践性”:一方面,注重学生自主参与、全过程参与(经历发现和提出问题、分析和解决问题的全过程),让学生积极动脑(独立思考)、动手(自主设计解决问题的思路)、动口(合作交流);另一方面,注重数学与生活实际、数学与其他学科、数学内部知识的联系和综合应用。此外,综合实践活动可以以“长作业”的形式出现,将课堂内的数学活动延伸到课堂外,让学生经历收集数据、查阅资料、独立思考、合作交流、实践检验、推理论证等多种形式的活动。更重要的是,综合实践活动不仅关注结果,更关注学生积累活动经验、展现思考历程、交流收获体会、激发创造潜能的过程。这样,在多种活动形式、多种过程体验及多种评价方式的交融浸润中,更利于激发、促进、培养学生的应用意识。

 

 

 

第十节  创新意识

 

一、对创新意识的认识

创新是21世纪出现频率最高的词汇,它已经普及到几乎每一个领域,当然它也是教育领域最重要的词汇,它是这次课程改革的标志性词汇的代表。

创新的含义是什么?既简单,又复杂。简单地说创新是指做一些新的事情,英文是To make something new。“新”有几层含义,对所有人都是“新”的,称为原创的;或者对某些人是“新”的;也可以对自己是“新”的,自己没有做过的事情。创新能力是指完成创新工作的能力,要求是比较高的;创新意识要求低一些,认识创新的重要,在学习数学的过程中有好奇心,对新事物感兴趣,不断地发现和提出问题,有创新的欲望,尝试去做一些对自己是新的、没有想过、没有做过的事情,用学过的数学方法解决问题。

创新的重要性毋庸置疑,什么时间开始培养学生的创新意识?上个世纪末,世界一批最优秀科学家特别是一批诺贝尔奖获得者倡导在儿童和学校教育中开展“做中学”(“Hans on”)活动,提高幼儿园和小学的科学教育水平,培育科学的思维方式。“做中学”是让儿童和学生参与一些“科学活动”。这种做法的目的之一就是激发孩子的好奇心和激发想象力,培养他们的创新意识。在综合实践活动的解读中我们也详细介绍了一些具体做法。创新意识的培养应该从儿童做起,在义务教育阶段结合年龄特征,寻求适合学生的形式来不断加强。

发现和提出问题是创新的基础。在上个世纪七十年代,数学和数学教育领域开展了一次讨论,讨论的主题是“在数学、数学教育中,什么是最重要的?”——“What is the key in mathematics and mathematical education?”,最主要的是数学的定义、公理?数学的概念?数学的定理?等等。著名数学家Harmous 写了一篇阶段性的总结文章,他的看法是问题是主要的。问题是数学发展的源泉,也是数学创新的基础,研究数学与学习数学在这一点上没有本质的差异,只是深度和难度上的差异。问题可以把思考引向深处,问题可以发现新的思路。

 

二、《标准》中的创新意识

在《标准》中,创新意识是此次修改新增加的一个核心概念。标准指出“创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。”我们应该注意以下几点:

1.创新意识培养应贯穿数学教育始终

正如前面所指出的,创新意识应该从儿童开始培养。对于孩子来说好奇心是天性,他们有很多很多的问题,他们对一切都感到新鲜、富于想象。保护、激发他们这些好奇心是教师的职责。这些是最宝贵的东西,这些就是学生创新意识的基础。随着年龄的增长,他们需要学习很多新知识、新技能,学习的目的是帮助他们产生更多的问题,解决更多的问题,是使他们的思想更活跃、更丰富。在学习过程中,做一些习题是必要的,目的是帮助学生更好理解和掌握知识和技能。长期以来我们数学教育中存在的一个问题是,过多的、盲目的、仅仅为了应对考试的习题训练,束缚了学生的思维,压抑了他们的好奇心和想象力,以至于很多同学(甚至成绩很好的同学)只有不会做的习题,却提不出有价值的问题。著名数学家R.库朗在上世纪40年代所表达的观点值得我们思索:

“两千多年来,人们一直认为每一个受教育者都必须具备一定的数学知识。但是,今天,数学教育的传统地位却陷入了严重的危机之中,而且遗憾的是数学工作者要对此负一定的责任。数学教学有时竟演变成空洞的解题训练,这种训练虽然可以提高形式推理的能力,但却不能导致真正的理解与深入的独立思考。

…………,教师、学生和一般受过教育的人都要求数学家有一个建设性的改造,而不是听其自然,其目的是要真正理解数学是一个有机的整体,是科学思考与行动的基础。”( ——R.柯朗(1941年,什么是数学的序言,2003,复旦大学出版社)

当代著名的数学和数学史专家M.克莱因也批评了这种现象:数学学科并不是一系列的技巧,这些技巧只不过是它微不足道的方面:它们远不能代表数学,就如同调配颜色远不能当作绘画一样。技巧是将数学的激情、推理、美和深刻的内涵剥落后的产物。如果我们对数学的本质有一定的了解,就会认识到数学在形成现代生活和思想中起重要作用这一断言并不是天方夜谭。(M.克莱因《西方文化中的数学》,复旦大学出版社,2005

    数学教育应该启发人们的思维,培养学生的创新意识。当然,培养学生创新意识不仅仅是数学教育的任务,而是整个义务教育的任务。正如前面指出的:问题是数学中最重要的,通过问题意识培养,激励、焕发学生潜在的创新精神是数学教育应该做的中心工作。

2、从“分析与解决问题”到“发现与提出问题”

20世纪70年代,在数学教学大纲中提出了培养学生“分析和解决问题的能力”。在高中数学课程标准(试验稿)中,又明确提出“提高数学地提出、分析和解决问题(包括简单的实际问题)的能力”,并把它作为数学课程的目标之一。在此次次义务教育数学课程标准修改中,把“发现和提出问题,分析和解决问题”作为了数学课程总体目标的表述内容,即:“初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,增强应用意识,提高实践能力。获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。” 从强调“分析与解决问题”到不仅强调“分析与解决问题”,还要强调“发现与提出问题”,这是数学课程目标的一个发展,其实质就是重视创新,重视学生创新意识的培养,这应该成为基于时代发展要求之下的数学教育的魂。

学习数学必须有问题,没有问题学不好数学,不仅要能解决别人的问题,更重要自己要有问题。学习数学的定义、概念,总要问为什么需要它?它与前面所学的什么有联系?它与实际生活有什么有联系?在学习数学的技能、方法、思想时,更需要深入发问,在回答中不断思考,不断理解,不断深入。在数学和实际的情境中,也需要提出问题的意识。问题是创新的基础,在义务教育阶段,培养学生的问题意识是培养学生创新意识的好办法。

 

3、根据年龄特点——在日常教与学中不断积累经验

创新意识培养不能一蹴而就,需要不断地实践,不断地积累经验。在课堂上做,在学习中要求,在教学的各个环节上不断地帮助学生积累。在培养学生创新意识时,应该充分考虑不同年龄的学生特点,对低龄学生,结合他们生活经验,引导他们关注一些身边的事物,发现一些有趣问题,引起思考的问题,例如,在学习角时,引导他们观察、讨论那些角是最常见的角——直角,进而讨论如何利用直角去区分其他的角?经过一段学习,又可以讨论为什么直角是最重要的角?随着年龄增长,引导学生从“感性”提出问题逐渐向“理性提出问题过渡,不断积累提出问题,提出好问题的经验。在初中阶段,可以让学生尝试着从实际生活情境和数学情境中独立地提出问题,判断问题的好坏。

4、“综合与实践”活动是培养创新意识的重要载体

“综合与实践”活动是培养创新意识的重要载体,这一点在“综合与实践”内容解读中做了详细的论述。教师要充分发挥综合与实践是“以问题为载体、以学生自主参与为主的学习活动”的特点和功能。让学生在此类活动中经历观察、实验、归纳、抽象、概括、猜想等多样性的活动,经历发现问题、提出问题、进而分析、解决问题的全过程。尽量使这样的过程给学生创新意识的孕育留下了非常丰富的“营养”,希望教师在日常教学中把这件事做好。

 

三、“创新意识”培养

1、鼓励“质疑——发现和提出问题”

学会学习的一个重要环节是学会质疑——发现和提出问题。我国著名数学家丁石荪曾说过:没有问题的学生不能算是好学生。保护学生发现和提出问题的积极性,就像保护学生的好奇心一样,非常重要。学生可能一下子不会把问题说清楚,这需要老师耐心引导,了解学生是教师的基本功。鼓励学生提问应该贯穿在教学的各个环节中,无论是在课堂上,还是在日常学习中,都应该鼓励学生提出他们的问题。问题可以是自己的疑惑,可以是自己的困难,也可以是自己的一些发现,等等。发现和提出问题是需要氛围的,需要发问的“气场”,这就希望教师营造一个好的学习环境,让学生在这样的环境中活跃起来,敢于提问,敢于发表自己的观点,敢于讨论,敢于坚持。

2、鼓励“在做中积累经验”

有些事情是可以教的,但创新意识不是靠教出来的,是“做出来的”,是学生在各个教学环节中不断亲身经历、不断锻炼,不断积累而形成的。因此,教师要坚持在“做”中去培养学生的问题意识、从而逐步提升学生的创新意识。

3、老师要带头

 

凡是要求学生做的,教师要带头,教师在教学的各个环节中应该要求自己有问题,能够提出问题,并通过提问引导教学不断深入。在新课程推进中,教师在这方面积累了很多很好的经验,如,问题驱动式的教学、问题串式的教学,还有“问题课程”等等。希望广大教师创造出更多的好经验。

 

稿源:2011版《义务教育数学课程标准解读》

作者:2011版课标解读专家组

 

 

 

(邱廷建转载:《新世纪小学数学网》)


 

 

 

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有