加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

[转载]神奇的“克莱因瓶”四维空间的模型(转载)

(2014-12-31 11:04:41)
标签:

转载

分类: 心理资料

 

      在1882年,著名数学家菲立克斯•克莱因(Felix Klein)发现了后来以他的名字命名的著名“瓶子”。这是一个象球面那样封闭的(也就是说没有边)曲面,但是它却只有一个面。在图片上我们看到,克莱因瓶的确就象是一个瓶子。但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。如果瓶颈不穿过瓶壁而从另一边和瓶底圈相连的话,我们就会得到一个轮胎面。

http://1841.img.pp.sohu.com.cn/images/blog/2008/12/21/6/1/11eff5c89e2g213.jpg    

      我们可以说一个球有两个面——外面和内面,如果一只蚂蚁在一个球的外表面上爬行,那么如果它不在球面上咬一个洞,就无法爬到内表面上去。轮胎面也是一样,有内外表面之分。但是克莱因瓶却不同我们很容易想象,一只爬在“瓶外”的蚂蚁,可以轻松地通过瓶颈而爬到“瓶内”去——事实上克莱因瓶并无内外之分!在数学上,我们称克莱因瓶是一个不可定向的二维紧致流型,而球面或轮胎面是可定向的二维紧致流型。

http://1861.img.pp.sohu.com.cn/images/blog/2008/12/21/6/1/11eff6022aag214.jpg                                      菲立克斯•克莱因

     如果我们观察克莱因瓶的图片,有一点似乎令人困惑——克莱因瓶的瓶颈和瓶身是相交的,换句话说,瓶颈上的某些点和瓶壁上的某些点占据了三维空间中的同一个位置。但是事实却非如此。事实是:克莱因瓶是一个在四维空间中才可能真正表现出来的曲面,如果我们一定要把它表现在我们生活的三维空间中,我们只好将就点,只好把它表现得似乎是自己和自己相交一样。事实上,克莱因瓶的瓶颈是穿过了第四维空间再和瓶底圈连起来的,并不穿过瓶壁。这是怎么回事呢?我们用扭节来打比方。看底下这个图形

http://1802.img.pp.sohu.com.cn/images/blog/2008/12/21/6/1/11eff5c8737g215.jpg     

      如果我们把它看作平面上的曲线的话,那么它似乎自身相交,再一看似乎又断成了三截。但其实很容易明白,这个图形其实是三维空间中的曲线,它并不和自己相交,而且是连续不断的一条曲线。在平面上一条曲线自然做不到这样,但是如果有第三维的话,它就可以穿过第三维来避开和自己相交。只是因为我们要把它画在二维平面上时,只好将就一点,把它画成相交或者断裂了的样子。克莱因瓶也一样,这是一个事实上处于四维空间中的曲面。在我们这个三维空间中,即使是最高明的能工巧匠,也不得不把它做成自身相交的模样;就好象最高明的画家,在纸上画扭结的时候也不得不把它们画成自身相交的模样。题图就是一个用玻璃吹制的克莱因瓶。

                               大家大概都知道莫比乌斯带。http://1831.img.pp.sohu.com.cn/images/blog/2008/12/21/6/1/11eff5c75cag215.jpg       你可以把一条纸带的一段扭180度,再和另一端粘起来来得到一条莫比乌斯带的模型。这也是一个只有一个面的曲面,但是和球面、轮胎面和克莱因瓶不同的是,它有边(注意,它只有一条边)。如果我们把两条莫比乌斯带沿着它们唯一的边粘合起来,你就得到了一个克莱因瓶(当然不要忘了,我们必须在四维空间中才能真正有可能完成这个粘合,否则的话就不得不把纸撕破一点)。同样地,如果把一个克莱因瓶适当地剪开来,我们就能得到两条莫比乌斯带。http://1841.img.pp.sohu.com.cn/images/blog/2008/12/21/6/1/11eff5c7ba3g213.jpg     除了我们上面看到的克莱因瓶的模样,还有一种不太为人所知的“8字形”克莱因瓶。它看起来和上面的曲面完全不同,但是在四维

     空间中它们其实就是同一个曲面——克莱因瓶。

http://1851.img.pp.sohu.com.cn/images/blog/2008/12/21/6/1/11eff6011f6g214.jpg

                            8字形克莱因瓶

克莱因瓶的制造

      事实上,德国数学家克莱因就曾提出了“不可能”设想,即拓扑学的大怪物——克莱因瓶。这种瓶子根本没有内、外之之分,无论从什么地方穿透曲面,到达之处依然在瓶的外面,所以,它本质上就是一个“有外无内”的古怪东西。 尽管现代玻璃工业已经发展得非常先进,但是,所谓的“克莱因瓶,却始终是大数学家克莱因先生脑子里头的“虚构物”,根本制造不出来。

     许多国家的数学家老是想造它一个出来,作为献给国际数学家大会的礼物。然而,等等他们的是一个失败接着一个失败。 也有人认为,即使造不出玻璃制品,能造出一个纸模型也不错呀。如果真的解决了这个问题,那可是个大收获啊!

     但实际上,据说克莱因瓶已经被人制造出来了。在郭凯声等编著的《数学游戏》(下)一书的“玻璃克莱因瓶”一文中有清楚的介绍。兹引录部分如下:Alan Bennett是英国贝德福德的一位玻璃吹制工。几年前,他开始对拓扑学中出现的各种神秘的形状――墨比乌斯带、克莱因瓶等等――发生兴趣,并遇到了一个新奇的难题,数学家本会通过计算来尝试解决这个难题,而Bennett则用玻璃解决了它。他做出的一系列引人注目的物品很快就将成为伦敦科学博物馆中的一项永久性陈列品。

克莱因瓶的一些应用猜想

     如果莫比乌斯带能够完美的展现一个“二维空间中一维可无限扩展之空间模型”的话,克莱因瓶只能作为展现一个“三维空间中二维可无限扩展之空间模型”的参考。因为在制作莫比乌斯带的过程中,我们要对纸带进行180度翻转再首尾相连,这就一个三维空间下的操作。理想的“三维空间中二维可无限扩展之空间模型”应该是在二维面中,朝任意方向前进都可以回到原点的模型,而克莱因瓶虽然在二维面上可以向任意方向无限前进,但是只有在两个特定的方向上才会回到原点,并且只有在其中一个方向上,回到原点之前会经过一个“逆向原点”,真正理想的“三维空间中二维可无限扩展之空间模型”也应该是在二维面上朝任何方向前进,都会先经过一次“逆向原点”,再回到原点。而制作这个模型,则需要在四维空间上对三维模型进行扭曲。

     数学中有一个重要分支叫“拓扑学”,主要是研究几何图形连续改变形状时的一些特征和规律的,克莱因瓶和莫比乌斯带变成了拓扑学中最有趣的问题之一。莫比乌斯带的概念被广泛地应用到了建筑,艺术,工业生产中。

 http://1831.img.pp.sohu.com.cn/images/blog/2010/3/14/15/1/1280c6aa764g213.jpg

科学研究相关文章:

 

震惊世界!宇宙神秘现象的科学证明 http://zhl81922610.blog.sohu.com/141931066.html

死亡真相临死前一秒会看到什么 http://zhl81922610.blog.sohu.com/131769407.html

植物神奇的功能震惊了世界 http://zhl81922610.blog.sohu.com/130762722.html

神奇的“克莱因瓶”四维空间的模型 http://zhl81922610.blog.sohu.com/106944408.html

神秘的黄金分割律 1:0.618 http://zhl81922610.blog.sohu.com/99141000.html

神奇数字142857 隐藏着惊天大秘密 http://zhl81922610.blog.sohu.com/73758161.html

地震中到底发生了什么  http://zhl81922610.blog.sohu.com/65556074.html

 

美国的麦克唐盖尔博士测出了人类灵魂的重量 http://zhl81922610.blog.sohu.com/63848735.html

女人是变幻莫测的生物 http://zhl81922610.blog.sohu.com/63819286.html

前苏联时光倒流绝密实验 http://zhl81922610.blog.sohu.com/62958931.html

女人与男人在医学上惊人的差异 http://zhl81922610.blog.sohu.com/62830340.html

世界上你所不知道的24件事 http://zhl81922610.blog.sohu.com/59680969.html

神秘的北纬30度 http://zhl81922610.blog.sohu.com/55411819.html

二战期间德国竟造出了飞碟 http://zhl81922610.blog.sohu.com/51215839.html

爱因斯坦是否信仰上帝 http://zhl81922610.blog.sohu.com/51206622.html

 

地球内部发现面积相当于北冰洋的大水域:北京异常 http://zhl81922610.blog.sohu.com/50544727.html

你所不知道的人体秘密 http://zhl81922610.blog.sohu.com/49594378.html

南极大融冰温度不再零下:人类大难临头 http://zhl81922610.blog.sohu.com/46433715.html

手相解读:教你看手相 http://zhl81922610.blog.sohu.com/46421251.html

奇妙的微观世界 http://zhl81922610.blog.sohu.com/46356745.html

三亿公吨冰山海底全貌 http://zhl81922610.blog.sohu.com/46354964.html

地球生命是如何产生的 http://zhl81922610.blog.sohu.com/46327837.html

 

0

  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有