《空间向量与立体几何》的教学反思
(2010-10-31 10:59:25)
标签:
教育 |
一、其教育价值体现在:
空间向量为处理立体几何问题提供了新的视角(“立体几何初步”侧重于定性研究,本章则侧重于定量研究)。空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。
进一步体会向量方法在研究几何问题中的作用。向量是一个重要的代数研究对象,引入向量运算,使数学的运算对象发生了一个重大跳跃:从数、字母与代数式到向量,运算也从一元到多元。向量又是一个几何对象,本身既有方向,又有长度;是沟通代数与几何的一个桥梁,是一个重要的数学与物理模型,这些也为进一步学习向量和研究向量奠定了一定的基础。
二、与原大纲教材的比较:
原大纲目标表述 |
新课标目标表述 |
1.理解空间向量的概念掌握空间向量的加法、减法和数乘. 2.了解空间向量基本定理;理解空间向量的坐标的概念,掌握空间向量运算. 3.掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式. 4. 理解直线的方向向量、平面的法向量、向量在平面内的射影. 5.掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念(对于异面直线的距离,只要求会利用给出公垂线计算距离); 6.掌握直线和平面垂直的性质定理;掌握两个平面平行的判定定理和性质定理;掌握两个平面垂直的判定定理和性质定理. |
1.经历向量及其运算由平面向空间推广的过程 . 2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示 . 3.掌握空间向量的线性运算及其坐标表示 . 4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直. 5.理解直线的方向向量与平面的法向量. 6.能用向量语言表述线线、线面、面面的垂直、平行关系 . 7.能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理) . 8.能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用 |
利用向量来解决立体几何问题是学习这部分内容的重点,要让学生体会向量的思想方法,以及如何用向量来表示点、线、面及其位置关系。
新老课程相比,该部分减少了大量的综合证明的内容,重在对于图形的把握,发展空间概念,运用向量方法解决计算问题,这样的调整,将使得学生把精力更多地放在理解数学的细想方法和本质方面,更加注意数学与现实世界的联系和应用,重在发展学生的数学思维能力,发展学生的数学应用意识,提高学生自觉运用数学分析问题、解决问题的能力,为学生日后的进一步学习,或工作、生活中应用数学,打下更好的基础。
二、教学要求
1. 注重联系
2
本章以立体几何问题为载体,体现向量的工具作用和向量方法的基本步骤和原理,再次渗透符号化、模型化、运算化和程序化的数学思想。主要要思想方法是:
(1)类比、猜想、归纳、推广(让学生经历由平面向空间推广的过程);
(2)能灵活选择向量法、坐标法与综合法解决立体几何问题。
3. 温故知新
空间向量的基本概念及其性质是后续学习的前提,由于空间向量是平面向量的推广,空间向量及其运算所涉及的内容与平面向量及其运算类似,所以,空间向量的教学上要注重知识间的联系,温故而知新,运用类比的方法认识新问题,经历向量及其运算由平面向空间推广的过程。
4.强调通法
(1)向量法有别于传统的纯几何方法,而是将几何元素用向量表示,进行向量运算,再回归到几何问题。这种“三步曲”式的解决问题过程,在数学中具有一般性。
(2)三步曲:空间向量表示几何元素→利用向量运算研究几何元素间的关系→把运算结果翻译成相应的几何意义。
§
5.螺旋上升
(1)必修2中,已经讨论过空间中直线、平面的平行、垂直等位置关系,当时没有对相关判定定理进行证明,只证明了相关性质定理。
(2)本章以三垂线定理、线面垂直的判定定理等为例,用向量方法对其进行证明,然后指出运用向量方法可以证明关于线面位置关系的其他判定定理,并引导学生进行尝试。这样可以加强所学前后知识的联系,对空间位置关系提高认识水平。
三、教学建议
1.用好本章引言
空间向量在理论研究和解决实际问题方面有广泛应用,它成为解决立体几何中的大量问题的有力工具。
在本章我们把平面向量推广到空间向量,学习空间向量的概念、运算、坐标表示,并利用空间向量的运算解决有关立体几何问题。
空间向量与平面向量没有本质区别,它们的运算:加法、减法、数乘、数量积也完全相同。
2.注重数学思想
由于空间向量是平面向量的推广,空间向量及其运算所涉及的内容与平面向量及其运算类似,因此,宜多引导学生与平面向量及其运算类比,与实数及其运算类比,从“数、量与运算”发展的角度理解向量。让学生经历向量由平面向空间推广的过程,使学生体会其中的数学思想方法:类比与归纳。体验数学在结构上的和谐性与在推广过程中的问题,并如何解决问题
3.本章的重点内容
空间向量和向量方法是重点内容,而对于立体几何知识并不作系统安排,只是通过几个立体几何具体问题的例子,体现空间向量在解决立体几何问题时的应用,对解决立体几何中某些用综合法解决时技巧性较大、随机性较强的问题提供了一些通法。要使学生加强对几何中向量方法的一般性认识。