加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

自适应滤波算法基本应用及解释

(2013-11-09 11:10:46)
标签:

it


自适应滤波器有4种基本应用类型:
1) 系统辨识:这时参考信号就是未知系统的输出,当误差最小时,此时自适应滤波器就与未知系统具有相近的特性,自适应滤波器用来提供一个在某种意义上能够最好拟合未知装置的线性模型
2) 逆模型:在这类应用中,自适应滤波器的作用是提供一个逆模型,该模型可在某种意义上最好拟合未知噪声装置。理想地,在线性系统的情况下,该逆模型具有等于未知装置转移函数倒数的转移函数,使得二者的组合构成一个理想的传输媒介。该系统输入的延迟构成自适应滤波器的期望响应。在某些应用中,该系统输入不加延迟地用做期望响应。
3) 预测:在这类应用中,自适应滤波器的作用是对随机信号的当前值提供某种意义上的一个最好预测。于是,信号的当前值用作自适应滤波器的期望响应。信号的过去值加到滤波器的输入端。取决于感兴趣的应用,自适应滤波器的输出或估计误差均可作为系统的输出。在第一种情况下,系统作为一个预测器;而在后一种情况下,系统作为预测误差滤波器。
4) 干扰消除:在一类应用中,自适应滤波器以某种意义上的最优化方式消除包含在基本信号中的未知干扰。基本信号用作自适应滤波器的期望响应,参考信号用作滤波器的输入。参考信号来自定位的某一传感器或一组传感器,并以承载新息的信号是微弱的或基本不可预测的方式,供给基本信号上。

这也就是说,得到期望输出往往不是引入自适应滤波器的目的,引入它的目的是得到未知系统模型、得到未知信道传递函数的倒数、得到未来信号或误差和得到消除干扰的原信号。

自适应滤波通俗点讲就是混合信号向期望信号的逼近。在逼近的过程中,根据观测信号与真实(期望)信号的均放误差(MSE)为量化指标,按照一定规则进行迭代(迭代规则自己可以设定),直到算法收敛(收敛条件有很多,比如达到预先设定的迭代次数、或达到允许的误差等)。现有的常见自适应算法有RLS,LMS,NLMS,往往都是按照梯度下降法或牛顿法进行迭代。

教材在讲述自适应信号处理的算法时往往给出的只是自适应信号处理的基本结构,在实际应用时还需要有针对性的来设计。然而,实际中不可能先得到期望的信号,如果能得到就没必要再滤波了。但是,如果把噪声或者干扰看做是期望信号,而需要估计的信号看做是干扰,那么自适应滤波器输出的误差信号就是需要得到的信号的估计,实际中使用的大部分自适应信号处理结构都可以归结为这个结构。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有