加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

PCA的matlab程序

(2011-04-27 07:04:47)
标签:

杂谈

PCA的matlab程序

模式识别与图像处 2010-10-12 13:20:31 阅读67 评论0   字号: 订阅

程序说明:y = pca(mixedsig),程序中mixedsig为 n*T 阶混合数据矩阵,n为信号个数,T为采样点数, y为 m*T 阶主分量矩阵。程序设计步骤:
1、取均值
2、计算协方差矩阵及其特征值和特征向量
3、计算协方差矩阵的特征值大于阈值的个数
4、降序排列特征值
5、去掉较小的特征值
6、去掉较大的特征值(一般没有这一步)
7、合并选择的特征值
8、选择相应的特征值和特征向量
9、计算白化矩阵
10、提取主分量

程序代码

%程序说明:y = pca(mixedsig),程序中mixedsig为 n*T 阶混合数据矩阵,n为信号个数,T为采样点数
% y为 m*T 阶主分量矩阵。

%function y = pca(mixedsig)
if nargin == 0
error('You must supply the mixed data as input argument.');
end
if length(size(mixedsig))>2
error('Input data can not have more than two dimensions. ');
end
if any(any(isnan(mixedsig)))
error('Input data contains NaN''s.');
end

%——————————————去均值————————————
mixedsig=imread('image');

meanValue = mean(mixedsig);%计算mixedsig各列均值,meanValue为1*T矩阵。
mixedsig = mixedsig - meanValue * ones(1,size(meanValue,2));
[Dim,NumofSampl] = size(mixedsig);
oldDimension = Dim;
fprintf('Number of signals: %d\n',Dim);
fprintf('Number of samples: %d\n',NumofSampl);
fprintf('Calculate PCA...');
firstEig = 1;
lastEig = Dim;
covarianceMatrix = cov(mixedsig',1); %计算协方差矩阵
[E,D] = eig(covarianceMatrix); %计算协方差矩阵的特征值和特征向量

%———计算协方差矩阵的特征值大于阈值的个数lastEig———
rankTolerance = 1e-5;
maxLastEig = sum(diag(D)) > rankTolerance;
lastEig = maxLastEig;

%——————————降序排列特征值——————————
eigenvalues = flipud(sort(diag(D)));

%—————————去掉较小的特征值——————————
if lastEig < oldDimension
lowerLimitValue = (eigenvalues(lastEig) + eigenvalues(lastEig + 1))/2;
else
lowerLimitValue = eigenvalues(oldDimension) - 1;
end
lowerColumns = diag(D) > lowerLimitValue;

%—————去掉较大的特征值(一般没有这一步)——————
if firstEig > 1
higherLimitValue = (eigenvalues(firstEig - 1) + eigenvalues(firstEig))/2;
else
higherLimitValue = eigenvalues(1) + 1;
end
higherColumns = diag(D) < higherLimitValue;

%—————————合并选择的特征值——————————
selectedColumns =lowerColumns & higherColumns;

%—————————输出处理的结果信息—————————
fprintf('Selected[ %d ] dimensions.\n',sum(selectedColumns));
fprintf('Smallest remaining (non-zero) eigenvalue[ %g ]\n',eigenvalues(lastEig));
fprintf('Largest remaining (non-zero) eigenvalue[ %g ]\n',eigenvalues(firstEig));
fprintf('Sum of removed eigenvalue[ %g ]\n',sum(diag(D) .* (~selectedColumns)));

%———————选择相应的特征值和特征向量———————
E = selcol(E,selectedColumns);
D = selcol(selcol(D,selectedColumns)',selectedColumns);

%——————————计算白化矩阵———————————
whiteningMatrix = inv(sqrt(D)) * E';
dewhiteningMatrix = E * sqrt(D);

%——————————提取主分量————————————
y = whiteningMatrix * mixedsig;

%——————————行选择子程序———————————
function newMatrix = selcol(oldMatrix,maskVector)
if size(maskVector,1)~ = size(oldMatrix,2)
error('The mask vector and matrix are of uncompatible size.');
end
numTaken = 0;
for i = 1:size(maskVector,1)
if maskVector(i,1) == 1
takingMask(1,numTaken + 1) == i;
numTaken = numTaken + 1;
end
end
newMatrix = oldMatrix(:,takingMask);

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有