加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

Matlab  interp的用法

(2015-09-15 22:41:43)
标签:

matlab

interp2

分类: Matlab
interp1——一维数据插值函数
一维数据插值。该函数对数据点之间计算内插值,它找出一元函数f(x)在中间点的数值,其中函数表达式由所给数据决定。
yi=interp1(x,Y,xi):返回插值向量yi,每一元素对应于参量xi,同时由向量X与Y的内插值决定。参量x 指定数据Y的点。若Y为一矩阵,则按Y的每列计算。yi是阶数为length(xi)*size(Y,2)的输出矩阵。
yi=interp1(Y,xi):假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。
yi=interp1(x,Y,xi,method):用指定的算法计算插值。nearest为最近邻点插值,直接完成计算;linear为线性插值(默认方式),直接完成计算;spline为三次样条函数插值。
yi=interp1(x,Y,xi,method,'extrap'):对于超出x范围的xi中的分量将执行特殊的外插值法extrap。

yi=interp1(x,Y,xi,method,extrapval):确定超出x范围的xi中的分量的外插值extrapval,其值通常取NaN或0。
interp2函数——二维数据内插值
完成二维的数据插值。
ZI=interp2(X,Y,Z,XI,YI):返回矩阵ZI,其元素包含对应于参量XI与YI(可以是向量、或同型矩阵)的元素。用户可以输入行向量 和列向量Xi与Yi,此时,输出向量Zi与矩阵meshgrid(xi,yi)是同型的。同时取决于由输入矩阵X、Y与Z确定的二维函数 Z=f(X,Y)。
ZI=interp2(Z,XI,YI):默认地,X=1:n、Y=1:m,其中[m,n]=size(Z)。再按第一种情形进行计算。
ZI=interp2(Z,n):作n次递归计算,在Z的每两个元素之间插入它们的二维插值,这样,Z的阶数将不断增加。interp2(Z)等价于interp2(z,1)。
ZI=interp2(X,Y,Z,XI,YI,method):用指定的算法method计算二维插值。linear为双线性插值算法(默认算法),nearest为最临近插值,spline为三次样条插值,cubic为双三次插值。

interp3函数——三维数据插值
完成三维数据插值。
VI=interp3(X,Y,Z,V,XI,YI,ZI):求出由参量X,Y,Z决定的三元函数V=V(X,Y,Z)在点(XI,YI,ZI)的值。参 量XI,YI,ZI是同型阵列或向量。若向量参量XI,YI,ZI是不同长度、不同方向(行或列)的向量,这时输出参量VI与Y1,Y2,Y3为同型矩 阵。Y1,Y2,Y3为用函数meshgrid(XI,YI,ZI)生成的同型阵列。若插值点(XI,YI,ZI)中有位于点(X,Y,Z)之外的点,则 相应地返回特殊变量值NaN。
VI=interp3(V,XI,YI,ZI):默认地,X=1:N,Y=1:M,Z=1:P,其中,[M,N,P]=size(V),再按上面的情形计算。
VI=interp3(V,n):作n次递归计算,在V的每两个元素之间插入它们的三维插值。这样,V的阶数将不断增加。interp3(V)等价于interp3(V,1)。
VI=interp3(...,method):用指定的算法method做插值计算。linear为线性插值(默认算法),cubic为三次插值,spline为三次样条插值,nearest为最邻近插值。
interpn函数——n维数据插值
完成n维数据插值。
VI=interpn(X1,X2,...,Xn,V,Y1,Y2,..,Yn):返回由参量X1,X2,..,Xn,V确定的n元函数 V=V(X1,X2,..,Xn)在点(Y1,Y2,...,Yn)处的插值。参量Y1,Y2,...,Yn是同型的矩阵或向量。若 Y1,Y2,...,Yn是向量,则可以是不同长度,不同方向(行或列)的向量。
VI=interpn(V,Y1,Y2,...,Yn):默认地,X1=1:size(V,1),X2=1:size(V,2),...,Xn=1:size(V,n),再按上面的情形计算。
VI=interpn(V,ntimes):作ntimes递归计算,在V的每两个元素之间插入它们的n维插值。这样,V的阶数将不断增加。interpn(V)等价于interpn(V,1)。
from:http://sdcz123.blog.163.com/blog/static/20768204320126891910164/


二维插值,interp2与griddata的区别

interp2的插值数据必须是矩形域,一般使用meshgid生成的 
而griddata函数的插值数据X和Y没有那么多数据,特别是对试验中随机没有规律采取的数据进行插值具有很好的效果 
griddata(X,Y,xi,yi,'v4') v4是一种插值算法,没有具体的名字,一般认为是最好的 
X和Y提供的已知数据点,xi和yi是需要插值的数据点,一般使用meshgrid生成,当然也可以其他数据,但是那样绘图的时候就比较麻烦,不能使用mesh等,只能使用trimesh 

Example:
x=[0,0.25 ,0.5,0.75,1];
y=[620,700,800,900,1000];
z=[0.00214      0.01025        0.01681        0.02331        0.02644        
   0.00236        0.01039        0.01717        0.02375        0.02711        
   0.00286        0.01058        0.01739        0.02411        0.02792        
   0.00328        0.01072        0.01747        0.02442        0.02878        
   0.00369        0.0108         0.01761         0.02481        0.0295      ];
xi=linspace(0,1,100); 
yi=linspace(600,1000,80); 
[xii,yii]=meshgrid(xi,yi); 
zii=interp2(x,y,z,xii,yii,'cubic');  
mesh(xii,yii,zii) 
hold on    
[xx,yy]=meshgrid(x,y); 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有