加载中…
个人资料
meshtopology
meshtopology
  • 博客等级:
  • 博客积分:0
  • 博客访问:20,177
  • 关注人气:64,074
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

量子通讯(Quantum Teleportation)传输实验在中国成

(2010-05-28 19:34:03)
标签:

科技

量子纠缠

潘建伟

中国

量子通讯

quantum

teleportation

it

杂谈

电信

分类: 科学

量子通讯(Quantum Teleportation)传输实验在中国成功进行

 

量子通讯(Quantum <wbr>Teleportation)传输实验在中国成
量子通信

量子通讯(Quantum <wbr>Teleportation)传输实验在中国成
量子通信

量子通讯(Quantum <wbr>Teleportation)传输实验在中国成
量子通信实验室

量子通讯(Quantum <wbr>Teleportation)传输实验在中国成

近日,中国科学家实现了目前世界上最长距离的“量子通信传输”(teleportation)或者称为“物质瞬间传送技术”技术。来自中国科技大学和清华大学的研究人员在合肥国家实验室完成了他们的自由空间量子通信实验,并且成功地将通信距离延伸到了10英里。在这之前,这项传输距离的最大值仅为几百米。

需要说明的一点是,量子通信与我们从科幻小说中了解到的并不相同,在科幻电影或小说中一个地方的物体或人可以在另一个地方完美的复制出来。在量子通信中,两个光子或离子形成纠缠态,当一个的量子态发生改变另一个也随之改变,就好象它们仍然连在一起。因而能让量子信息实现远距通信。

曾被爱因 斯坦称作幽灵般的超距离作用(spooky action at a distance)的“量子纠缠”,指的是,在量子力学中,有共同来源的两个微观粒子之间存在着某种纠缠关系,不管它们被分开多远,只要一个粒子发生变化就能立即影响到另外一个粒子,即两个处于纠缠态的粒子无论相距多远,都能“感知”和影响对方的状态,这就是量子纠缠。
量子通讯(Quantum <wbr>Teleportation)传输实验在中国成
由于量子纠缠的存在,使得光子、电子甚至是原子之间相互影响相互制约地共同传输。理论上讲,这种纠缠可以使两点之间,不论距离的即时通信顺利完成。在以前的实验中,光子被限制在数百米长的光纤信道内,以确保它们的状态不发生改变,即便如此,光纤传输的保密性差,易被窃听。如今,中国科学家把纠缠态的高能光子对穿过10英里长的自由空间通道,量子保密通信技术的物理原理保证了其绝对安全性。这一距离是目前国际上自由空间纠缠光子分发的最远距离,也是目前国际上没有窃听漏洞量子密钥分发的最大距离。

研究人员发现,在这个距离上接收端的光子仍能响应留在后方的光子状态变化。远距传输的平均保真度为89%。这项突破意味着不久的未来量子通信应用将能扩大到全球规模。

该实验由中国科技大学的科学家潘建伟教授主导,实现了目前国际上最远距离的“自由空间纠缠光子分发”,他和他的同事杨涛、彭承志的研究论文已发表于国际物理学权威期刊《物理评论快报》。该期刊的审稿人对这一成果给予了高度评价,称之为 “一项相当了不起的成就”。
量子通讯(Quantum <wbr>Teleportation)传输实验在中国成
WT-1量子路由器与WT-2量子交换机

在该实验中,科学家们通过“自由空间纠缠光子的分发”,首次在国际上证明了纠缠光子在穿透等效于整个大气层厚度的地面大气后,其纠缠的特性仍然能够保持,并可应用于高效、安全的量子通信。这一研究成果为实现全球化的量子通信奠定了实验基础。

该项 实验,为全球范围内量子保密通讯的实现带来希望。

据潘建伟的研究团队介绍,他们正在计划开展更远距离的量子通信实验,下一步的目标是通过自由空间实现几百公里的量子通信,超越光纤传输的极限。他们希望,有朝一日,人类能够通过通信卫星实现更远距离乃至全球的量子保密通信。

资料来源:电子系统设计(ed-china)

量子通讯(Quantum <wbr>Teleportation)传输实验在中国成
在北京网通的商用光纤主干网络中进行四端口量子密码网络实验

附:量子通讯(Quantum Teleportation)

 

量子通讯(Quantum Teleportation)是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。

  量子通讯是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。目前量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。
编辑本段量子通信系统
  量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置。按其所传输的信息是经典还是量子而分为两类。前者主要用于量子密钥的传输,后者则可用于量子隐形传送和量子纠缠的分发。所谓隐形传送指的是脱离实物的一种“完全”的信息传送。
编辑本段量子通信发展史
  1993年,C.H.Bennett提出了量子通信的概念;同年,6位来自不同国家的科学家,提出了利用经典与量子相结合的方法实现量子隐形传送的方案:将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处。其基本思想是:将原物的信息分成经典信息和量子信息两部分,它们分别经由经典通道和量子通道传送给接收者。经典信息是发送者对原物进行某种测量而获得的,量子信息是发送者在测量中未提取的其余信息;接收者在获得这两种信息后,就可以制备出原物量子态的完全复制品。该过程中传送的仅仅是原物的量子态,而不是原物本身。发送者甚至可以对这个量子态一无所知,而接收者是将别的粒子处于原物的量子态上。在这个方案中,纠缠态的非定域性起着至关重要的作用。量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信。

  1997年,在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实现了未知量子态的远程传输。这是国际上首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上。实验中传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输。

中科大在合肥建成世界上首个光量子电话网 

将量子通信技术运用到电话网络,建立起多个电话用户之间真正安全、不怕窃听的“量子级”通话方式。记者从中国科学技术大学获悉,日前,该校潘建伟研究小组在实用化量子通信方面取得了重大进展,在合肥建成世界上首个光量子电话网,这标志着绝对安全的量子通信由实验室走进了日常生活。

    从中国科学技术大学获悉,日前,该校潘建伟研究小组在实用化量子通信方面取得了重大进展,在合肥建成世界上首个光量子电话网,这标志着绝对安全的量子通信由实验室走进了日常生活。

    据介绍,量子通信是量子力学和经典通信的交叉学科,有着传统通信方式所不具备的绝对安全特性,在国家安全、金融等信息安全领域有着重大的应用价值和前景。从20世纪90年代开始,海内外科学家一直致力于将量子通信理论进行实用化的研究,但因实验器件的不完美性和缺乏真正的单光子源,量子通信系统的安全通信速率随着距离增加而急剧下降,量子通信系统只能停留在实验室内,不具备应用价值。

    2003年,韩国、中国、加拿大等国学者提出了诱骗态量子密码理论方案,彻底解决了真实系统和现有技术条件下,量子通信的安全速率随距离增加而严重下降的问题。2006年夏,中国潘建伟小组、美国洛斯阿拉莫斯国家实验室、欧洲慕尼黑大学-维也纳大学联合研究小组各自独立实现了诱骗态方案,同时实现了超过100公里的量子保密通信实验,其中,潘建伟小组最近完成的实验又将绝对安全通信距离延长到200公里。

    此后,由中国科大潘建伟、陈增兵、彭承志等人组成的团队针对量子通信实用化展开了攻关研究,研制成功量子电话样机,并在商业光纤网络的基础上,组建了可自由扩充的光量子电话网,节点间距达到20公里,实现了“一次一密”加密方式的实时网络通话和3方对讲机功能,真正实现了“电话一拨即通、语音实时加密、安全牢不可破”的量子保密电话。该成果已于今年4月发表在国际光学领域著名期刊《光学快递》上,并立即被美国《科学》杂志以“量子电话呼叫”为题进行了报道。

    据悉,光量子电话网的建成,是中国科学家继自由空间量子纠缠分发、绝对安全距离大于100公里的量子保密通信之后,在实用化量子通信领域取得的又一国际领先的研究成果。

量子通讯(Quantum <wbr>Teleportation)传输实验在中国成
量子中继器的完美实现

量子信息技术的基础研究
http://www.cas60.cn/images/yq_hwline.jpgTeleportation)传输实验在中国成" TITLE="量子通讯(Quantum Teleportation)传输实验在中国成" />

第一完成单位:中国科技大学
获奖奖种:国家自然科学奖
获奖时间:2003
获奖等级:2
内容简介:
  中国科技大学在量子信息理论、技术和应用方面取得多项原创性重大成果:潘建伟教授等首次成功实现量子纠缠态的浓缩并研制出远距离量子通信中亟须的量子中继器; 实现五光子、六光子纠缠态的隐形传输;建成世界首个光量子电话试验网。郭光灿教授等首创概率量子克隆原理;实现125公里量子保密通信;首次利用北京市商用光纤实现四端口多用户量子保密传输实验。这标志着我国在量子通信领域研究已处于世界领先行列。 

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有