加载中…
个人资料
quantimet720金相技术
quantimet720金相技术
  • 博客等级:
  • 博客积分:0
  • 博客访问:25,011
  • 关注人气:299
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

6612-充满浓重“俄罗斯情调”的『结晶学的发展简史』

(2017-03-15 12:18:00)
标签:

结晶学的发展简史

俄罗斯情结!

分类: 金相源流

充满浓重“俄罗斯情调”的『结晶学的发展简史』

------个人作了“大量”的编辑工作;因为,文章的“底子好”

 

 

 

 

 

 

 

 

 

       中国百科网的科普知识中,有一个页面“结晶学的发展简史[1],但是,创建、分享者并没有注明“来源”。感觉是一个“综合体”。

 

 

 

 

 

 

 

参考资料:

[1]  http://www.chinabaike.com/z/shenghuo/kp/2016/0411/4569533.html  结晶学的发展简史

结晶学的发展和其它学科一样,都是随着人类社会生产力的发展而逐渐发展起来的。它的发展过程如同人们认识事物的过程一样,是由表及里,由简单到复杂的。

十七世纪以前,人们对晶体就已经开始有了一些认识。但是由于在这一时期生产发展很慢,欧洲各国宗教神权占了统治地位。因此,对于各种自然现象的解释也都带上了宗教迷信的色彩。对晶体的认识也不例外,把它看成是上帝创造的。

十七世纪以后,结晶学开始作为一门科学得到发展。人们开始从事这方面的研究,发现了许多与结晶体本质有关的现象。十八世纪为几何结晶学的主要发展时期,至十九世纪几何结晶学逐渐走向完备,达到了成熟阶段,开始进行晶体构造学方面的研究。到了十九世纪末X射线被人们发现,并于二十世纪初把它应用到晶体内部构造中去。这样,便使得结晶学的发展大大地向前推进一步。出现了结晶学的许多新分文,产生了许多新的理论。

现将结晶学发展过程按其几个主要阶段分述如下:

 1)萌芽时期(十七世纪)

这个时期是结晶学开始发展阶段,一般只是注意晶体的外表研究。才开始注意到晶体的光学性质。

1669年,丹麦学者斯丹诺(NSteno1638-1687)对石英和赤铁矿晶体进行了研究后,首先发现了晶体的面角守恒定律(又称斯丹诺定律)。这一定律的发现便奠定了结晶学的基础,特别是几何结晶学的基础。使人们从千资百态的晶体外形中找到了初步规律。

与此同时,丹麦学者巴尔托林(Rasmus BartholinLatinized: Erasmus Bartholinus1625-1698)于1669年发现当光在通过方解石晶体时,会出现双折射现象。从而奠定了晶体光学的基础。

1678年,荷兰学者惠更斯CHuygens1629-1695)根据方解石的解理和双折射性质,提出了晶体是具有一定形状的物质质点(成椭球形的物质分子)作规则的累迭而渡的,还试图找出晶体内部的构造规律。这一观点是晶体构造思想的最早萌芽。(注明:惠更斯的提及,有些“突兀”!一般看不到这样的说法。

1688 年,加格利耳米尼斯(Domenico guglielmini1655-1710https://it.wikipedia.org/wiki/Domenico_Guglielmini )把面角守恒定律推广到多种晶体上。

2)发展阶段(十八---十九世纪)

这个时期是几何结晶学的主要发展阶段,几何结晶学的许多基本定律,都在这时建立起来。到了十九世纪,可以说是已经达到了非常成熟的阶段,并提出了晶体构造的理论。

1750年,俄国学者艾列尔(Эйлер,1707-1783)研究晶体的形态特征,发现所有晶体的晶面数加角顶总是等于晶棱数加2这一公式,后来被人们称为艾列尔公式(注:晶面数+隅数=晶棱数+2 ,这公式是俄国科学家艾列尔,就是大数学家欧拉Leonhard Euler,在18世纪阐明的)。

1729年,俄国学者罗蒙诺索夫(Михаил Васильевич Ломоносов1711-1765,米哈伊尔·瓦西里耶维奇·罗蒙诺索夫,俄国近代科学之父)创立了“微分子学说”,认为晶体是由球形的微分子堆砌而成的。他以此解释了硝石(NaNO3)(硝石,是硝酸钾,还是硝酸钠?)晶体的六边形与柱面的夹角总是120°。这就不但从理论上阐释了晶体面角守恒定律的本质问题,而且这一见解和后来所建立起来的晶体构造的现代概念有些相近。

1780年,法国学者阿诺德(ACArnould1742-1806)发明接触测角仪。后来,法国学者罗美德利尔(Louis Romé de l'Isle 1736-1790)利用这一测角仪进行了二十多年的测角工作,一共测量了500多种矿物晶体。肯定了晶体面角守恒定律的普遍意义

1784年,法国学者阿羽依(René Just Haüy1743-1822)基于对方解石晶体沿着解理面裂开性质的观察,提出了,晶体是由无数个具有多面体形状的原始“组成单位”在三度空间无间隙地平行堆砌而成。他的这种思想奠定了晶体构造学的基础。

1801年,阿羽依发表了著名的整数定律(又称阿羽依定律),从而满意地解释了晶体外形与其内部构造间的关系。此外,他又提出了晶体是对称的,这种对称不但为晶体外形所固有,同时也发现在晶体的物理性质上。

1809年,英国学者乌拉斯顿(William Hyde Wollaston1766-1828)设计出了第一台反射测角仪(the reflecting goniometer)。这种仪器的出现,使得晶体测角工作的精度大为提高。当时,这项工作盛极一时,曾积累了许多实际资料。

1805-1809年间,德国学者魏斯(Christian Samuel Weiss1780-1856)以实验方法确定了晶体中不同的旋转轴。继之又总结出了晶体的对称定律,并于1813年首先提出晶体分为六大晶系。他的这些工作为晶体的合理分类奠定了基础。与此同时,他又奠定了结晶学中另一个重要定律---晶带定律(又称魏斯定律)。从而进一步阐明了晶体界限要素之间的关系。

1818年和1839年,德国学者魏斯和英国学者米勒尔(William Hallowes Miller1801-1880 https://en.wikipedia.org/wiki/William_Hallowes_Miller )先后创立了表示晶面空间位置的魏氏符号和米氏符号(Miller indices)。后者,至今仍得到广泛的应用。

1830年,德国学者赫塞尔(Johann Friedrich Christian Hessel1796-1872)首先推导出晶体外形可能的一切对称组合-32种对称型。但由于当时不被重视(计算方式也不严谨!),所以他的这一成果未被人们所注意。

1867年,俄国学者加多林(Axel V. Gadolin1828-1892)用严谨的数学方法加以推导,得出了相同的32种对称型,引起人们的重视。从而完成了晶体宏观对称的总结工作,为晶体的分类奠定了基础。晶体内部构造理论的研究工作,随着几何结晶学的深入开展,也得到了迅速的发展。(加多林的文章是:Mémoire sur la déduction d'un seul principe de tous les systèmes cristallographiques 1867))

1842年,德国学者弗兰肯汉姆(Moritz Ludwig Frankenheim1801-1869)首先提出了晶体内部格子构造的理论。他认为,晶体的内部构造应以点为单位在三度空间成周期性的重复排列。同时,又提出了平行六面体的概念。据此,又推出了15种可能的空间格子形式。(1826年,32

1848年,法国学者布拉维(Auguste Bravais1811-1863)修正了弗兰肯汉姆的研究成果,并于1855年用数学的方法推导出了晶体构造中14种空间格子。成为近代晶体构造理论的奠基人。

1879年,德国学者松克(Leonhard Sohncke1842-1897)在布拉维构造理论的基础上又进一步将14种空间格子的等同点系发展成为包括平移、旋转和螺旋旋转群的65种规则点系(松克点系Sohncke groups)。

1889年,俄国结晶学家、现代结晶学的奠基人费多罗夫(Evgraf Stepanovich Fedorov1853-1919)第一个提出反映滑移这一新的对称变换。从而运用数学的方法推导出了晶体结构中一切可能的对称要素组合方式---230种空间群(费多罗夫群),这一理论,便成为一切有关晶体构造的研究基础。同时,费多罗夫又发明了双圈测角仪和费氏旋转台使晶体的研究工作大大向前推进一步。

1891年和1894年,德国学者熊夫利斯(Arthur Moritz Schoenflies1853-1928)和英国学者巴罗(William Barlow1848-1934 https://en.wikipedia.org/wiki/William_Barlow_geologist))分别于1891年和1894年,从点在空间排列方式的角度出发,相继用不同的方法得出了同样的结果。至此,晶体构造的理论研究工作已经非常成熟了,为晶体结构的分析建立了理论基础,并提供了可能。然而,这一理论得到进一步的证实要在二十年以后。

3)近代(二十世纪)

1912年,德国学者劳埃(MVLaue1879-1960)第一次成功地进行了X射线通过晶体发生衍射的实验。这才,具体证实了晶体格子构造的真实性。以后,在劳埃的指导下,弗瑞德里赫和克尼屏利用X射线通过闪锌矿晶体时,同样成功地获得了清晰的衍射斑点,更进一步证实了劳埃的设想。由于劳埃实验的成功,使结晶学进入了一个蓬勃发展的阶段。它不仅证实了晶体构造的理论而且更重要的是提供了用X射线来研究晶体具体构造的可能,为晶体构造学的发展开辟了一个广阔的前景。从此,便形成了一门新的学科---X射线晶体学。劳埃为此又确立了著名的晶体衍射劳埃方程式。

1913年,英国学者布拉格(WLBragg1862-1942)和俄国学者吴里夫Георгий Юрий Викторович ВульфG. V. Vulf1863-1925)各自独立地导出了X射线晶体结构分析的基本公式,即著名的吴里夫---布拉格公式Wulff-Bragg's condition,在前苏联习惯如此称呼。)。历史上首先被人们所认识的NaClKCl的晶体构造,便是由WL.布拉格所揭示的。

从此,又射线晶体结构的分析工作便得以广泛地开展。许多晶体的内部构造也都一一地被揭示出来。人们对晶体的研究便打开了新的思路,不限于化学组成,也涉及到品形和物性的相互关系,并深入到晶体的内部构造中去。于是结晶学的又一个分支---晶体化学经过长期的孕育使得到了产生和发展。近代结晶化学相继取得了许多重大的成就。

1951年,苏联学者舒勃(布)尼柯夫(Shubnikov1901-1945)将对称理论向前推进了一步,提出正负对称型的概念,创立了对称理论的非对称学说。基于这一新的概念,另外二位苏联学者,扎莫扎也夫和别洛夫(ZamozayevBelov)增加了晶体所可能有的对称形式,将费德洛夫230个空间群发展成为1651个舒勃尼柯夫黑白对称群。

1956 年,别洛夫又提出多色对称理论的概念,并探讨了4 维空间的对称问题。这些理论在晶体学、晶体化学、晶体物理学领域中得到广泛的应用。

1959年,我国学者彭志忠等发现了一种新矿物(香花石),填补了32晶类中一个晶类(五角三四面体晶类)的空白。对葡萄石的研究也增加了一种新的构造越位

结晶学到现在为止,可以说它已经发展成为一门以晶体为实际基础而具有高度的理论性和严密的逻辑性的科学了。

 

[2]  https://wenku.baidu.com/view/26e01b8a02020740bf1e9b48.html  结晶学绪论(长春理工大学 米晓云)

 

[3]  http://www.ics.uci.edu/~eppstein/junkyard/euler/  Twenty Proofs of Euler's Formula: V-E+F=2

Many theorems in mathematics are important enough that they have been proved repeatedly in surprisingly many different ways. Examples of this include the existence of infinitely many prime numbers, the evaluation of zeta2, the fundamental theorem of algebrapolynomials have roots, quadratic reciprocitya formula for testing whether an arithmetic progression contains a square and the Pythagorean theoremwhich according to Wells has at least 367 proofs. This also sometimes happens for unimportant theorems, such as the fact that in any rectangle dissected into smaller rectangles, if each smaller rectangle has integer width or height, so does the large one.

This page lists proofs of the Euler formula: for any convex polyhedron, the number of vertices and faces together is exactly two more than the number of edges. Symbolically V−E+F=2. For instance, a tetrahedron has four vertices, four faces, and six edges; 4-6+4=2.

A version of the formula dates over 100 years earlier than Euler, to Descartes in 1630. Descartes gives a discrete form of the Gauss-Bonnet theorem, stating that the sum of the face angles of a polyhedron is 2πV−2, from which he infers that the number of plane angles is 2F+2V-4. The number of plane angles is always twice the number of edges, so this is equivalent to Euler's formula, but later authors such as Lakatos, Malkevitch, and Polya disagree, feeling that the distinction between face angles and edges is too large for this to be viewed as the same formula. The formula V−E+F=2 wasrediscovered by Euler; he wrote about it twice in 1750, and in 1752 published the result, with a faulty proof by induction for triangulated polyhedra based on removing a vertex and retriangulating the hole formed by its removal. The retriangulation step does not necessarily preserve the convexity or planarity of the resulting shape, so the induction does not go through. Another early attempt at a proof, by Meister in 1784, is essentially the triangle removal proof given here, but without justifying the existence of a triangle to remove. In 1794, Legendre provided a complete proof, using spherical angles. Cauchy got into the act in 1811, citing Legendre and adding incomplete proofs based on triangle removal, ear decomposition, and tetrahedron removal from a tetrahedralization of a partition of the polyhedron into smaller polyhedra. Hilton and Pederson provide more references as well as entertaining speculation on Euler's discovery of the formula. Confusingly, other equations such as ei pi = -1 and aphin= 1mod nalso go by the name of "Euler's formula"; Euler was a busy man.(有很多欧拉公式,欧拉真得很忙!)

The polyhedron formula, of course, can be generalized in many important ways, some using methods described below. One important generalization is to planar graphs. To form a planar graph from a polyhedron, place a light source near one face of the polyhedron, and a plane on the other side.

The shadows of the polyhedron edges form a planar graph, embedded in such a way that the edges are straight line segments. The faces of the polyhedron correspond to convex polygons that are faces of the embedding. The face nearest the light source corresponds to the outside face of the embedding, which is also convex. Conversely, any planar graph with certain connectivity properties comes from a polyhedron in this way.

Some of the proofs below use only the topology of the planar graph, some use the geometry of its embedding, and some use the three-dimensional geometry of the original polyhedron. Graphs in these proofs will not necessarily be simple: edges may connect a vertex to itself, and two vertices may be connected by multiple edges. Several of the proofs rely on the Jordan curve theorem, which itself has multiple proofs; however these are not generally based on Euler's formula so one can use Jordan curves without fear of circular reasoning.

 

[4]  https://wenku.baidu.com/view/b7e6fe69a45177232f60a2cb.html  1 X射线衍射学基础

俄国学者吴里夫(Byльф Г. В.)同期推导出布拉格方程

 

[5]  https://en.wikipedia.org/wiki/Wulff_net

 

       This special graph paper is called a stereonet or Wulff net, after the Russian mineralogist George Yuri Viktorovich Wulff.[7]

 

^ Wulff, George, Untersuchungen im Gebiete der optischen Eigenschaften isomorpher Kristalle: Zeits. Krist.,36, 1–28 1902

 

[6]  https://en.wikipedia.org/wiki/George_Wulff

George Yuri Viktorovich Wulff Russian: Георгий Юрий Викторович Вульф 22 June 1863, Nizhyn Russian Empire, nowadays Ukraine – 25 December 1925, Moscow was a Russian crystallographer.

The Wulff construction,[1] Wulff net[2][3] and Wulff-Bragg's condition are named after him. Wulff was one of the first to experiment with X-ray crystallography.[4]

References[edit]

^ G Wulff, Zeitschrift fur Krystallographie und Mineralogie, 34, 5/6, pp 449-530, 1901.

^ Marc De Graef; Michael E. McHenry 15 November 2012. Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry. Cambridge University Press. p. 150. ISBN 978-1-139-56047-4

^ Бармасов Алесандр Викторович 2009. Курс общей физики для природопользователей. Молекулярная физика и термодинамика. БХВ-Петербург. p. 452. ISBN 978-5-94157-731-6

^ Urusov, V. S. 2015. "Role of Russian scientists in the discovery of X-ray crystallographic analysis in the beginning of the scientific revolution of the 20th century". Journal of Structural Chemistry. 55 7: 1200–1205. doi:10.1134/S0022476614070026. ISSN 0022-4766.

 

[7]  https://en.wikipedia.org/wiki/Bragg's_law

In physics, Bragg's law, or Wulff–Bragg's condition in post-Soviet countries, a special case of Laue diffraction, gives the angles for coherent and incoherent scattering from a crystal lattice. When X-rays are incident on an atom, they make the electronic cloud move as does any electromagnetic wave. The movement of these charges re-radiates waves with the same frequency, blurred slightly due to a variety of effects; this phenomenon is known as Rayleigh scattering or elastic scattering. The scattered waves can themselves be scattered but this secondary scattering is assumed to be negligible.

A similar process occurs upon scattering neutron waves from the nuclei or by a coherent spin interaction with an unpaired electron. These re-emitted wave fields interfere with each other either constructively or destructively overlapping waves either add up together to produce stronger peaks or are subtracted from each other to some degree, producing a diffraction pattern on a detector or film. The resulting wave interference pattern is the basis of diffraction analysis. This analysis is called Bragg diffraction.

 

[8] http://xueshu.baidu.com/s?wd=paperuri:(b0dacdb9e4c667a60053900de8909fd9)&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http://dx.doi.org/10.1134/s0022476614070026&ie=utf-8&sc_us=11663754833385093629

Role of Russian scientists in the discovery of X-ray crystallographic analysis in the beginning of the scientific revolution of the 20th century  by V. S. Urusov下载不了,遗憾!

Abstract

In connection with the 100th anniversary of the discovery of the phenomenon of the diffraction of X-rays by crystals Max von Laue, 1912 and the basics of X-ray crystallographic analysis Lawrence Bragg, 1913, the article marks the major milestones in this outstanding event in the history of science. Special emphasis is given to the role of Russian scientists E. S. Fedorov, G. V. Vulf in the emergence and early steps in the establishment of this discovery being one of the pillars of the scientific revolution of the first half of the past century.

 

[9]  http://encyclopedia2.thefreedictionary.com/Bragg-Vulf+Condition  Bragg-Vul’f Condition

a condition determining the position of the interference maximums of X rays that are scattered by a crystal without a change in wavelength. The Bragg-Vul’f condition was established independently in 1913 by two scientists, the Englishman W. L. Bragg and the Russian G. V. Vul’f, shortly after the German scientist M. von Laue and his colleagues discovered the diffraction of X rays. According to the Bragg-Vul’f theory, the maximums arise upon the reflection of X rays from a system of parallel crystallographic planes when the beams reflected by the various planes in the parallel system have a path difference equal to a whole number of wavelengths. The Bragg-Vul’f condition may be expressed as follows:

 

6612-充满浓重“俄罗斯情调”的『结晶学的发展简史』

Figure 1

2d sin θ = mλ

where d is the distance between planes, θ is the Bragg angle the angle between the reflecting plane and the incident beam, λ is the wavelength of the X radiation, and m is the so-called order of reflection, which is a positive whole number see Figure 1.

The Bragg-Vul’f condition is fulfilled in cases of the scattering by crystals not only of gamma rays but also of X rays, as well as the diffraction of electrons, protons, and neutrons.

The Great Soviet Encyclopedia, 3rd Edition 1970-1979. © 2010 The Gale Group, Inc. All rights reserved.

 

[10]  http://baike.baidu.com/item/吴氏网

1、吴氏网的定义

吴氏网实际上是球网坐标的极射赤面投影。

2、吴氏网的应用

吴氏网是分析晶体投影的工具,最基本的是利用它在极射赤面投影图上直接测量面和晶向间的夹角。

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有