加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

4441-何子蛟:软氮化的“白亮层”

(2015-11-15 14:49:10)
标签:

何子蛟

软氮化的“白亮层”

何子蛟:软氮化的“白亮层”

------本人稍作编辑修改

 

 

http://wenku.baidu.com/view/57e7a45d3c1ec5da50e270fc.html?from=search  软氮化的“白亮层”  作者:hezj

钢的氮碳共渗(软氮化)中,获得厚度不到一根头发粗、薄薄如纸的白亮层,隐藏着许多的秘密。一方面在工程上获得广泛应用,也留下许多谜团。下面仅就这个问题说说个人的一些看法。

一、白亮层的优缺点及其应用

1. 渗氮和铁素体氮碳共渗时,对碳素钢而言,钢表面有一层化合物层,相结构为γ、ε、ε+γ,三种基本形式;奥氏体氮碳共渗快冷时,临近化合物层下面还有一层含氮碳奥氏体的淬火层,相结构为M+A。这种两种属性不同表面层,在弱酸性溶液中短时间浸蚀时抗蚀能力优于普通钢的基体组织,金相组织检查时,基体组织腐蚀出来后,仍然保持着为白色或灰白色,故称为‘白亮层’。

2. 化合物白亮层,具有较高的硬度和良好的热硬性、较好的抗大气和淡水腐蚀性能和较低的摩擦系数。含氮碳奥氏体淬火层具有中等硬度(可时效硬化)、耐磨性和耐蚀性(淬火态)都优于化合物层,其塑性也较高。两种白亮层都有同样的问题,其内部的相结构不同,性能上而有所差别。

3. 白亮层也有不足之处,单簿、脆性较大、怕酸、抗蚀性有限。在应用上,选择有所侧重,通常按三个方面,即高耐磨性与抗疲劳性;较高抗蚀性与耐磨性;良好的滑动摩擦与减摩性。同时要与钢牌号的选择相结合,优化组合达到工程上的不同要求。所以,不要以为白亮层的优点是万能的,通用的,不讲条件的。学以致用,掌握此门技术只是第一步,用好则是一种艺术。

4. 化合物白亮层在通常渗氮的合金钢工件上,是否有利,要看使用条件。对于局部承载力很大的零件,白亮层是有害的东西。由于容易压碎而剥落,碎片将加速零件表面的磨损、划伤,使零件过早失效,还有可能散落到其他组件上造成事故。尤其是高可靠性的精密机械,对化合物白亮层的厚度有严格的限制,甚至要求完全没有白亮层。这时,扩散层(内氮化层)才是设计所需要的。

近代兴起的可控氮化技术,就是针对这个问题发展起来的。可控氮化技术可以做到35μm以下(单相γ,),乃至无化合物层。这是渗氮技术上的重大突破。

5. 合金钢工件,在另一些情况下,例如承载力比较均匀、大气潮湿环境或某些弱腐蚀条件下工作、滑动磨擦副、某些成形模等,良好的白亮层则是必需的。合金钢的化合物白亮层由于有合金元素的参与,硬度更高,耐磨性更好,但脆性也大,在应用时,要考虑到此种特性,加以评估。

6. 在价廉的低中碳素钢上,运用铁素体氮碳共渗或奥氏体氮碳共渗技术,在钢表面生成不同相结构的白亮层,是热处理中一个重要的分支。由于零件畸变微小,简化了制造工艺路线工艺,且处理工艺多变易行,成本低,性价比高,开拓了众多的民用产品,在五金、工模具、电器、室外钢结构、装饰、摩托、汽车等行业都能见到它的身影,应用之广,令人瞠目。

二、白亮层的控制

仅就碳素钢气体氮碳共渗(软氮化)中,关于白亮层控制的若干问题,列述如下。

1. 两个基本的概念:临界氮势和门槛值。

在既定渗氮温度下,能够生成化合物γ,和ε相的最低氮势叫临界氮势值。炉气的氮势低于该值,无论渗氮多长时间,表面都不能生成γ,相或ε相。渗氮温度不同,临界氮势值也不一样,温度高,临界氮势值减小,反之亦然。有专门的计算公式可查。

门槛值是指炉气氮势高于该温度下的临界氮势值,但需要保持一段时间才开始在钢表面生成化合物相,这个开始时间与炉气氮势有关,氮势高开始生成化合物相的时间短,反之则长。门槛值则用纵坐标上的氮势值与横坐标上的时间值。它的物理含义是:必需越过门槛值后才能够开始生成白亮层。门槛值既是温度和时间的函数,还因钢牌号而异,是一个庞大的试验数据库。目前相关数据很少,生产实践中尚处于以结果修正工艺参数的摸索前进状态。

这两个界定化合物相生成条件的基本概念,构成了现代可控氮化的理论基础。

碳素钢中,由于没有生成合金氮化物的合金元素,其扩散层硬度并不高,对耐磨性的贡献甚微,还会使薄零件的塑性显著下降而变脆,因而没有实用价值。我们所进行的氮碳共渗,则是专门要获得所需要的表面白亮层,也就是用其之长。所以,处理过程中,炉气的氮势均大于临界值,工艺上必需越过门槛值。这样,对白亮层进行控制就成为一个很重要的问题。

2. 要对白亮层进行控制,控制什么?那就是厚度、相结构、极表面状态。可以围绕选择用途的侧重点进行分析。

1 高耐磨性与抗疲劳性:希望获得适当厚度、高硬度、脆性较低的白亮层。

2 较高抗蚀性与耐磨性:希望获得较厚、致密的白亮层,优异的表面状态。

3 良好的滑动摩擦与减摩性:良好减摩性与高抗磨的白亮层。

3. 影响白亮层厚度的因素,主要是处理的温度、时间以及炉气的氮势。温度高,时间长,氮势高,化合物的厚度增加,但厚度超过20μm后,表面容易产生疏松。产生疏松的机理,公认的是ε相分解后析出的N原子结合成氮分子化合物表面层生产巨大内压力,造成撕裂和孔洞。控制疏松的问题,当前仍然是一道难题。据悉近年来有所突破,一是控制炉气的氮势,另外就是添加某种抑制剂,可以获得更厚的致密的化合物层。实践表明,获得3040μm厚的致密化合物层是可以做到的,更厚也有了可能。

化合物白亮层厚了,抗磨损、抗蚀性增强,但更容易破碎、剥落。

4. 氮碳共渗与渗氮不同之处是处理过程中添加了含碳物质,分解出来的碳可以溶入氮化物相中,适度的碳可以提高化合物层的硬度,减小其脆性。当前,用得比较普遍是碳元素添加剂是二氧化碳和甲醇(或乙醇),要指出的是二氧化碳将提高炉气的氮势,而甲醇则降低炉气的氮势。在一定温度范围,先用二氧化碳,后用甲醇,可以获得ε单相组织。

然而,要获得较厚的(>6μm)γ,单相组织的问题尚无妙法解决。

当前,好些单位采用的铁素体氮碳共渗的工艺,所获得的化合物层大多数为脆性较高ε+γ,双相组织,对力争获得韧性较好单相组织的问题尚没有引起足够的重视。

5. ‘预氧化’对渗氮有明显催渗作用,也有益于减小零件加热时的畸变和渗层的均匀性,是近年来获得众多热处理工作者认可和采纳的一道工序。关于催渗的机理。周潘兵、周浪老师的研究,否定了关于氧化层先被还原为纯铁,然后在纯铁表面发生氨的吸附、分解、氮渗入这样的二段式观点。证明氧化膜与氨气反应直接转化为氮化物的现象:

4Fe3O4 + 4NH3 4Fe3N + 6H2O + 5O2

‘渗氮初期,预氧化纯铁表面发生Fe3O4 氧化层向2Fe3N (ε)相的转化;氮原子极易穿过Fe3O4 氧化层渗入基体,并在氧化层之下的铁基体形成γ′氮化物;γ′氮化物呈指状延伸生长,使得纯铁渗氮时的化合物层平直界面失稳’。

‘氮化物呈指状延伸生长’,由此可以做出这样的判断,‘预氧化’有益于白亮层的抗剥落性能的提高和降低其脆性。

6. 在较厚的化合物白亮层上,金相检查化合物白亮层的硬度分布问题。如果用显微硬度测定白亮层的截面硬度,就会发现,硬度分布有表面低头现象,即硬度最高处不在极表面,而是在次表面,随后又开始降低。一般的解释是表面出现疏松引起的。金相组织查明,没有疏松的化合物白亮层硬度分布也是如此;而且可以看到白亮层的表层总有一层腐蚀颜色稍重的浅灰色带(不论纯氨渗氮还是氮碳共渗产生的化合物白亮层都有这种现象,且合金结构钢上更为明显),这种外表层组织变灰的原因究竟是什么?相关的研究,x射线相分析查明,是氧化物质点(并不是疏松)。然而,这是怎么发生的,工艺上该如何避免?不得而知。用‘内氧化’解释仅是一种猜测,尚没有见到专题研究文章--本人没有见到不等于没有,寡闻而已。

目前常用的方法是抛光或精磨除掉这一层,使最高硬度位于零件表面。

还有一种情况,氮碳共渗时添加碳元素过多,按照Fe-N-C三元相图,白亮层组织中将出现FeXC碳化物相,这时金相组织也将易于浸蚀而变暗。这对耐蚀性要求高的零件是有害的。

7. 奥氏体氮碳共渗,对碳素钢来说,是在600720℃范围。对合金钢,奥氏体氮碳共渗的起始温度因钢牌号不同而有所变化,通常要高于600℃。

1 这一领域的工艺是由早期的‘抗蚀氮化’技术衍变而来,Fe-N平衡图的高温区和不同温度截面的Fe-N-C三元平衡图,揭示了其中的组织转变的奥秘。氮渗入钢表面后在一定浓度范围内降低了钢的A1点,在较低的温度下临近化合物层的内侧出现了奥氏体层。这种含氮碳的奥氏体AN,C)比通常的含碳奥氏体AC)的稳定性要好,并具有同含碳奥氏体同样的冷却特性,也就是说,有等温冷却和连续冷却曲线图。其马氏体转变温度Ms点和Mz点比较低,快冷至室温仍然有大量的残留奥氏体,即M+A。由于其抗蚀性较好,耐磨性也高,显示出另一个白亮层。这一白亮层与化合物白亮层之间有一条清晰的分界线。

2 由以上特性看出,对奥氏体氮碳共渗时出现的奥氏体层,可以运用常规热处理理论任意改变其组织形态,例如:等温冷却、淬火冷却、深冷处理、时效硬化、回火。探索空间大,内容相当丰富。所不同的是,选用这些热处理方法时,务必顾及到对化合物层的连带影响,使两者达到所需要的良好的组合。

3 扩展奥氏体白亮层的厚度和获得单一奥氏体白亮层的研究已经受到学者们的关注,并初有成效;他们研究成果受到热处理工作者的重视。然而要获得工程界的认可和应用,要转化为生产力,仍然有许多工作要做。

8.  QPQ技术是德国人上世纪60年代的一大创新。核心是保持钢表面的化合物层优点的前提下,将抗蚀能力大大提高到一个新水平--优于镀铬。这一技术,近年来也带动了气体氮碳共渗提高其抗蚀性能的发展,目前尚谈不上与QPQ技术并驾齐驱,但也是紧追不舍,逐步接近。

在防锈蚀问题上,相对来说,单纯的氧化膜抗蚀性能并不高,单纯化合物白亮层抗蚀性能虽然好得多,但还不够理想。QPQ的原理是将两者结合,抗蚀性能发生了突变,大大提高了。

这里面有指导理论的应用问题。由于氧化物类型本身和与钢表面、以及表面氮化物的比容不同,在氧化物生成过程中会产生很大的内应力,导致氧化物裂纹,新暴露处又会重新氧化,这种反复氧化的结果导致了氧化膜的疏松现象。也就是说,不论用什么方法,在化合物表面覆盖一层氧化膜(含Fe3O4),其实都有洞孔,不能完整的覆盖在钢表面。疏松和致密只是孔洞的大小多少程度不同而已。由表及里,氧化膜由较疏松到较致密,氧化物还可以渗入到化合物层表面的疏松层中起填充作用。如果把表面疏松部分抛除,用二次氧化的方法将致密层的微孔封闭,这种氮化物与氧化物交叉存在,相互紧密依赖的双重防护--就像两位勇士背靠背面对敌人作战一样--大大提高了表面的抗蚀能力。

气体氮碳共渗获得了化合物白亮层,或者还有奥氏体淬火层,随后来一次后续氧化,冷下来后抛光表面,再氧化一次。这种移植技术,近年来越来越受到热处理工作者的青睐,并且取得长足的进步。因为气体法具有维护工作比较简单,受控性较好,工作环境比较洁净方面的优点,在抗蚀处理的应用上,开始显示出与QPQ法相竞争的趋势。

至于后续氧化的方法,已知的有多种多样,如,通氮气+二氧化碳;氮气+滴注水;通水蒸气等。用抽真空变压方式进行氧化,氧化物的致密性和填充效果更好。

3. 化合物白亮层表面的疏松,虽然降低了抗疲劳、抗磨损、抗锈蚀等性能。而如果用聚合物减摩剂或(和)润滑剂对其微孔进行填充、浸润、封闭处理,即成为性能优良的减摩层,还可以提高其抗蚀性能,在承载力不大的滑动摩擦副中也不失为一种有益的选择。

三、结语

以上为个人一点学习心得,蜻蜓点水,聊天论道,实际上是班门弄斧。这个技术领域,内容非常丰富,我不懂的、未知的东西还有很多,错了也请指出。为不误导别人,仅供参考。要想学的更好、懂的更多,用得适当而巧妙,就得自己努力去追寻,在实践中有所发现,有所创新。

 

http://www.rclbbs.com/forum.php?mod=viewthread&tid=89852  SPCC软氮化+后氧化白亮层异常分析关闭

[size=6]下图为SPCC材料预氧化后经575℃×120min软氮化+后氧化处理的金相图片,在白亮层中发现黑色线条状物质向白亮层垂直延伸,请有经验的高手指点迷津,此现象是否正常?为何物?

Leoment前辈是否还在论坛指点?能否给点意见?

4441-何子蛟:软氮化的“白亮层”

002.jpg

 

4441-何子蛟:软氮化的“白亮层”001.jpg

 

4441-何子蛟:软氮化的“白亮层”
003.jpg

 

 

 

孤鸿踏雪 发表于 2012-7-8 14:27

客户要求是大于450HV0.05,一般做出来硬度在500-700之间,合格啊!这不是很好吗?

 

客户要求白亮层疏松≤50%,硬度大于450HV0.05,白亮层8-25um;白亮层上出现的黑色条纹,客户认为是疏松,所以他们一直测量到有黑色条纹的地方。结果就是他们测出的疏松比例超了。

检测方法有争议。所以我们想了解到底黑色条纹是什么原因造成的,了解了原因才能和客户沟通,并且统一检测方法。我认为是后氧化造成的黑色条纹,不知大家有何见解。如有不对欢迎指正。

 

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有