GMAT 数学余数问题
(2012-02-23 20:13:00)
标签:
杂谈 |
余数类题型解题方法
很多同学对余数题都不知如何下手,其实前辈们已经为我们总结了很多方法,为方便大家,我在这里给大家汇总2种最常用,同时也比较便捷的解题思路,希望能帮大家顺利通过考试。注:版权归原作者所有,俺只是负责宣传,:)
如果看不懂推理过程,也不必计较,直接记住方法就可以了。同时希望大家顺手up下,以便帮助后面的同学。
第一种、设通项式求解。
通项S,形式设为S=Am+B,一个乘法因式加一个常量
系数A必为两小通项因式系数的最小公倍数
常量B应该是两个小通项相等时的最小数,也就是最小值的S
例题:4-JJ78(三月84).ds某数除7余3,除4余2,求值。
解:设通项S=Am+B。由题目可知,必同时满足S=
7a+3=4b+2
A同时可被7和4整除,为28(若是S=6a+3=4b+2,则A=12)
B为7a+3=4b+2的最小值,为10(a=1.b=2时,S有最小值10)
所以S=28m+10
满足这两个条件得出的通项公式,必定同时满足两个小通项。如果不能理解的话,就记住这个方法吧,此类的求通项的问题就能全部,一招搞定啦
原链接
http://forum.chasedream.com/GMAT_Math/thread-51193-1-1.html
第二种:X^n除以a余?类问题
解法见下图
特别说明:一种“个位循环”的解法是错误的,用该法做题很危险。原因见15楼。
在此,贴出特例:
4^50除以3的余数。
解:4^n的个位是以4、6两个数交替的周期为2的循环,根据个位循环法:4^50个位数为6,显然6能被3整除,所以余数“似乎”该为0.被3整除了?!但是4^50=2^100,根本没有3这个因子,不可能被3整除!
事实上:
4^50=(3+1)^50=>1^50除3的余数?=>余1
[b][size=4]好像我的例子举得有点问题。
[/b][/size]
这让很多G友都误解为一定要化为+1……
如果q^n都能化为k*p+1的形式,那大家直接猜余数为1好了……
我的想法是:化成“比该除数小的数”就行了
(注意,是小于除数的数注意该数的次幂!34L以及和想法相同的的同学)
原帖链接
我在自己的讨论稿文档里,求余的时候,都会用到 mod
这个运算符。
mod:模。意思就是求余数。
比如说:5 mod 3=2,
100
mod 11=1
读作:五模三余二,一百模十一余一
这是标准的公式化写法,大家可能不太熟悉,但是知道意思了,其实也很简单。引入Mod,主要是可以用数学公式来写,而且可以把求余数的问题化简成为普通的四则运算的问题,也比较容易表达。
在讲如何求余之前,先来普及一下余数的一些性质。
首先就是余数的加减法:比如说100除以7余2,36除以7余1。那么100+36除以7余几呢?或者100-36除以7余几呢?很显然,只要用100除以7的余数2与36除以7的余数1进行加减就可以得到答案。通过这个例子可以很明显的看出来,余数之间是可以加减的。
总结写成书面的公式的话,就是:(M+N) mod q=((M mod q)+(N mod q)) mod q
然后我们再看余数的乘法:我们继续来看上面这个例子,如果要求100*36除以7的余数是多少,该怎么求呢?
我们不妨来这样做:
100=98+2=7*14+2,36=35+1=7*5+1;
这时100*36=(7*14+2)(7*5+1)=7*14*7*5 + 2*7*5 + 7*14*1 + 2*1
很明显,100*36除以7的余数就等于2*1=2
于是我们可以得出这样的一个结论:求M*N除以q的余数,就等于M除以q的余数
乘以 N除以q的余数。
类似的,如果是求N^m
除以q的余数呢?只要我们将N^m=N*N*N*...*N,也就是说分别地用每个N除以q的余数相乘,一共m个,得出的结果再对q求余数,即可求出结果。
举例来说:求11^4除以9的余数。化成公式即是:11^4
11^4
mod 9 = (9+2)^4 mod 9 = 2^4 mod 9 =16 mod 9 = 7
于是我们可以总结出这样的公式:
M*N mod q=(M mod q)*(N mod q)
mod q
(
M^n mod q =
(M mod q)^n mod q
)
那么,我们知道了这些性质之后对解题又有什么帮助呢?
As we all know,如果一个数乘以1,还是等于原数;而1的任意次方,还是等于1。
所以在解答这一类的问题的时候,只要我们尽量把计算中的余数凑成与1相关的乘式,结果显然会好算很多的。(或者-1,2之类的比较容易进行计算的数字都可以,因题而异。)
举例说明:求3^11除以8的余数。题目即是:3^11 mod 8=?
=3^10 * 3^1
=(3^2)^5*(3^1)
=9^5
=(8+1)^5 * 3
=1^5 *3
=3
发现没有,甚至没有去计算什么尾数的规律,答案就算出来了,而且只用了加减乘除。
那么再来看一道题目:求
(2^100)*(3^200)
除以7的余数
先化成计算公式:
(2^100)*(3^200)
=[2^(3*33 +
1)] * [3^(3*66 + 2)]
=[(2^3)^33 *
2] * [(3^3)^66 * 3^2]
=(8^33 * 2) *
(27^66 * 9)
=[(7+1)^33 *
2] * [(28-1)^66 * 9]
=(1^33 * 2)*
[(-1)^66 * 9]
=2*9
=4
注意:如果余数有负号,就当做负数一样计算。
我步骤写得很详细,但其实只要是熟练了,基本上只要三四步答案一定就出来了,有没有觉得很简单呢?赶紧找一两题来练练手吧,甚至随便写几个数字来做做试试看,像我上面的例题都是临时编的。
相信只要练习了三四道题目,以后再碰到这样的余数题,就会
会心地一笑:小样
,秒掉你!