小数除法教材分析
(2010-10-23 18:48:12)
标签:
杂谈 |
小数除法教材分析
一、教材内容:
1.小数除法的计算方法
2.商的近似值
3.循环小数
4.用计算器探索规律
5.用小数除法解决简单的实际问题
二、
1、使学生掌握小数除法的计算方法,能正确地进行计算。
2、使学生会用“四舍五入法”截取商是小数的近似值,能结合实际情况用“进一法”和“去尾法” 3、截取商的近似值。初步认识循环小数、有限小数和无限小数。
4、使学生能用计算器探索计算规律,能应用探索出的规律进行一些小数乘除法的计算。
5、使学生会解决有关小数除法的简单实际问题,体会小数除法的应用价值。
三、具体内容:
例1:整数部分够商1,能除尽。
例2 整数部分不够商1,能除尽。
例3 除到被除数的小数末尾还有余数,需要添0继续除。
例4 总结小数除以整数的计算方法。
例5 一个数除以小数。
例6 被除数的小数位数比除数少。
例7 用“四舍五入法”求商的近似值。
例8、例9 认识循环小数、有限小数和无限小数。
例10 用计算器探索规律,并用规律来计算。
例11 用连除的方法解决实际问题。
例12 结合具体情景体会“进一法”和“去尾法”。
四、教材编写变化:
小数除以整数部分:
(1)不再单独教学“小数除法的意义”,而是结合3个例题的具体数量关系,让学生体会小数除法的意义与整数除法的意义相同。
(2)贴近学生的生活,体现计算与解决问题的密切联系。例1~例3,都是晨练中的具体计算问题。
(3)体现算法多样化,体现学生对计算方法的探索过程(例1);留给学生自己尝试、探索的空间(例2、例3)。
(4)不出现文字概括形式的计算法则,而是让学生通过小组讨论交流的形式,总结计算时应注意的问题(例4)
一个数除以小数部分:
(1)例题的设计与原通用教材相同。
(2)没有安排对商不变性质的复习(前面练习中安排了)。
(3)没有出现文字概括形式的计算法则,不再进行总结概括。
商的近似数部分:
(1)情境贴近学生的生活,体现商的近似数知识在生活中的应用。
(2)呈现用计算器计算,符合生活实际,减轻学生计算负担。
循环小数部分:
(1)创设贴近学生生活的问题情境,在解决实际问题中引出要学习的内容。
(2)体现学生观察、思考、探索商的规律的过程。
(3)体现小组合作、自主探索的学习方式。
介绍有限小数和无限小数
通过组织学生讨论“两个数相除,如果不能得到整数商,所得的商会有哪些情况”。由商的两种情况,介绍有限小数和无限小数的概念。
以前学生对小数概念的认识仅限于有限小数。到学习了循环小数以后,小数概念的内涵进一步扩展了,循环小数就是一种无限小数。
用计算器探索规律
结合小数除法的学习,教材安排了用计算器探索规律的内容,让学生感受发现规律的乐趣,同时体会计算器的工具性作用。
解决问题
这里安排了有特殊数量关系的连除问题(例11)和根据实际情况用“进一法”和“去尾法”取商的近似值的问题(例12)。
四、教学中应注意的问题:
例1:着重说明除数是整数的小数除法的计算步骤与整数除法基本相同,不同的是要解决小数点的位置问题——商的小数点要和被除数的小数点对齐。
例2:提出“为什么要商0呢”,启发学生理解“整数部分不够商1,要商0,点上小数点再除”的算法。
例3:提出“接下来怎么除?”启发学生理解“除到被除数的小数末尾还不能除尽,要添0再除”的算法。“做一做”涉及了小数除以整数的各种情况。到此,学生探讨了小数除以整数的一般情况和特殊情况,可以比较完整地掌握小数除以整数的计算方法了。
例4:结合前三个例题的计算,引导学生回顾总结小数除以整数的计算步骤以及要注意的问题。在“做一做”中用改错的方式,提醒学生注意计算过程中常出错的问题。没有特别说明验算的方法,让学生用已学的知识自己思考如何验算。
例5:教学前可先复习商不变性质。用“想一想,除数是小数怎么计算”突出讨论的重点,用学生的话点明解决问题的基本方法是“把除数转化成整数”。用虚线框的图示呈现了根据商不变的性质,把除数和被除数同时扩大到原来的100倍,使除数变成整数的过程。之后出示简便的写法。
例6用学生提问“被除数的位数不够怎么办?”引起思考。并通过虚线框里的图示说明在把除数变成整数小数点要向右移动两位,而被除数12.6只有一位小数,要在被除数末尾用“ 0”补足。
到这里小数除法的教学基本完成,可以引导学生对小数除法的计算方法进行小结。小结时,要鼓励学生用自己的语言描述,再加以提炼。在学生概括的基础上,教师可引导学生把小数除法总结出三个步骤:
一看:看清除数有几位小数;
二移:把除数和被除数的小数点同时向右移动相同的位数,使除数变成整数。当被除数位数不足时,用“0”补足;
三算:按照除数是整数的小数除法的方法计算。
例7:呈现用计算器算比较复杂的小数除法,把重点放在如何根据生活实际的需要保留一定的小数位数上。
例8:教学商从某一位起,一个数字重复出现的情况,为认识循环小数提供感性材料。
例9:通过计算两道除法式题,呈现了除不尽时商的两种情况:一种是从某位起重复出现某个数字;另一种是从某位起几个数字依次不断重复出现。由此引出循环小数的概念并介绍循环小数的简便记法。
例10:让学生经历的发现规律的思维过程,即观察、对比、分析的过程,要给留给学生足够的独立思考时间。可以采用先独立发现,再小组交流的方式组织教学。用发现的规律写出商后,要问“你是根据什么来写这些商”,让学生说出自己应用规律的思维过程,加深对规律的理解。
例11:在引导学生分析数量关系时,可以采用先独立思考、再小组交流的方式进行。如果学生有困难,教师应给予必要的提示,比如问学生“能一步算出每头奶牛每天的产奶量吗”,“如果不能,那么应该先算什么,后算什么”……也可通过线段图形象地表示数量关系。要鼓励学生多向思维,体会解决问题策略的多样化,但不能要求每个同学都掌握多种解题方法。
例12:两题算出的结果都是小数,由于要求的瓶子数和礼品盒数都必须是整数,因此都要取计算结果的近似值。在取近似值时,不能机械地使用“四舍五入法”,而是要根据具体情况确定是“舍”还是“入”。教学中,不要求学生掌握“进一法”“去尾法”这些概念,只要学生能根据具体情况掌握这些求商的近似值的方法就行了。可让学生说一说生活中哪些地方用到了“进一法”或“去尾法”,感受这些方法的现实意义。