分类: 04STATA数据处理 |
# lets see if region is a reasonable IV
setwd("/Users/leopekelis/Desktop/13_youssef_mac")
code.data <- read.csv("seer minor salivary gland 1988-2008
- staged and coded v1.1 - Coded Data.csv")
bkgd.data <- read.csv("seer minor salivary gland 1988-2008
- staged and coded v1.1 - Background Data.csv")
loc.data <- read.csv("seer minor salivary gland 1988-2008 -
staged and coded v1.1 - Registry ID.csv")
seer.data = merge(merge(code.data, bkgd.data, by =
"Patient.ID"),
covs = c("Age.at.diagnosis", "Sex", "Race",
"Year.of.diagnosis",
RT.unknown = which(seer.data$Radiation.sequence.with.surgery
== 7) #remove these
seer.data = seer.data[-RT.unknown, ]
seer.data$Adj.RT = seer.data$Radiation.sequence.with.surgery
%in%
factor.idx = c(3, 4, 6, 7, 8, 10, 11, 28)
for (i in factor.idx) {
}
form = as.formula(paste("Adj.RT ~ Registry.ID + ", paste(covs,
collapse = "+")))
# combine some locations
temp = seer.data$Registry.ID
levels(temp) <- c("Alaska/Hawaii - 1973+",
levels(temp)[2:6], "Alaska/Hawaii - 1973+",
temp = factor(levels(temp)[as.numeric(temp)], levels =
c(levels(temp)[3],
seer.data$Registry.ID = temp
adj.rt.vec = NULL
for (i in levels(seer.data$Registry.ID)) {
}
IV.data = cbind(round(adj.rt.vec, 2),
round(table(seer.data$Registry.ID)/dim(seer.data)[1],
colnames(IV.data) = c("Adj.RT.Percent", "Percent.Obs")
print(IV.data) #lets get an overview of
locations
##
Adj.RT.Percent
Percent.Obs
## California excluding SF/SJM/LA - 2000+
0.22
0.15
## Alaska/Hawaii - 1973+
0.19
0.02
## Atlanta (Metropolitan) - 1975+
0.31
0.05
## Connecticut - 1973+
0.23
0.06
## Detroit (Metropolitan) - 1973+
0.25
0.10
## Greater Georgia - 2000+
0.32
0.04
## Iowa - 1973+
0.23
0.06
## Kentucky / Rural Georgia - 1992+
0.28
0.04
## Los Angeles - 1992+
0.23
0.14
## Louisiana - 2000+
0.33
0.03
## New Jersey - 2000+
0.28
0.05
## New Mexico - 1973+
0.21
0.03
## California SF/SJM/LA - 1973+
0.30
0.13
## Seattle (Puget Sound) - 1974+
0.22
0.08
## Utah - 1973+
0.16
0.03
IV.glm = glm(form, data = seer.data, family = binomial)
summary(IV.glm)
##
## Call:
## glm(formula = form, family = binomial, data =
seer.data)
##
## Deviance Residuals:
## Min
1Q Median
3Q
Max
## -2.846 -0.542 -0.343
0.248 2.595
##
## Coefficients:
##
Estimate Std. Error z
value
## (Intercept)
-4.65e+01
3.99e+02 -0.12
## Registry.IDAlaska/Hawaii - 1973+
-5.15e-01
5.70e-01 -0.90
## Registry.IDAtlanta (Metropolitan) - 1975+
6.81e-01
3.43e-01 1.98
## Registry.IDConnecticut - 1973+
1.61e-01
3.29e-01
0.49
## Registry.IDDetroit (Metropolitan) - 1973+
3.37e-01
2.83e-01 1.19
## Registry.IDGreater Georgia - 2000+
6.73e-01 3.51e-01
1.92
## Registry.IDIowa - 1973+
1.11e-01 3.31e-01
0.33
## Registry.IDKentucky / Rural Georgia - 1992+
4.71e-01 3.74e-01
1.26
## Registry.IDLos Angeles - 1992+
-8.03e-02
2.57e-01 -0.31
## Registry.IDLouisiana - 2000+
3.00e-01 3.85e-01
0.78
## Registry.IDNew Jersey - 2000+
1.38e-01 3.25e-01
0.42
## Registry.IDNew Mexico - 1973+
1.69e-01 4.57e-01
0.37
## Registry.IDCalifornia SF/SJM/LA - 1973+
6.00e-01
2.55e-01 2.36
## Registry.IDSeattle (Puget Sound) - 1974+
3.09e-01 3.01e-01
1.03
## Registry.IDUtah - 1973+
-8.82e-01
5.13e-01 -1.72
## Age.at.diagnosis
-2.61e-04
3.99e-03 -0.07
## Sex2
1.58e-01
1.32e-01
1.19
## Race2
1.53e-01
3.13e-01
0.49
## Race3
4.73e-03
2.04e-01
0.02
## Race4
-5.03e-02
6.28e-01 -0.08
## Year.of.diagnosis
1.32e-02
2.29e-02
0.58
## Tumor.location2
-7.77e-01
2.68e-01 -2.90
## Tumor.location3
3.57e-01 7.45e-01
0.48
## Tumor.location4
-2.41e-01
4.63e-01 -0.52
## Tumor.location5
-1.34e+00
4.84e-01 -2.76
## Tumor.location6
1.27e-02 4.97e-01
0.03
## Tumor.location7
1.70e-01 3.17e-01
0.53
## Tumor.location8
-1.88e-01
7.61e-01 -0.25
## Tumor.location9
8.66e-02 3.23e-01
0.27
## Tumor.location10
4.83e-01
5.40e-01
0.90
## T2
2.74e-01
1.88e-01
1.46
## T3
1.09e+00
2.43e-01
4.47
## T4
1.18e+00
1.92e-01
6.13
## T5
-4.16e-01
2.32e-01 -1.79
## N2
1.14e+00
3.74e-01
3.05
## N3
1.11e+00
2.64e-01
4.20
## N4
8.20e-02
7.78e-01
0.11
## N5
-4.41e-01
1.97e-01 -2.24
## Grade
6.87e-01
8.33e-02
8.24
## Histology2
-1.81e+00
9.57e-01 -1.89
## Histology3
-6.12e-01
9.63e-01 -0.63
## Histology4
-2.32e+00
9.55e-01 -2.43
## Histology5
-1.87e+01
2.24e+03 -0.01
## Histology6
-8.94e-01
1.62e+00 -0.55
## Histology7
1.28e+00
6.53e+03
0.00
## Histology8
-1.95e+01
4.55e+03
0.00
## Histology9
-1.51e+00
1.07e+00 -1.41
## Histology10
-1.60e+00
1.07e+00 -1.50
## Histology11
-1.81e+00
1.00e+00 -1.81
## Surgery2
1.93e+01 3.97e+02
0.05
## Surgery3
1.93e+01 3.97e+02
0.05
## Surgery4
1.90e+01 3.97e+02
0.05
## Surgery5
1.90e+01 3.97e+02
0.05
## Surgery6
1.96e+01 3.97e+02
0.05
## Surgery7
1.92e+01 3.97e+02
0.05
## Surgery8
2.01e+01 3.97e+02
0.05
##
Pr(>|z|)
## (Intercept)
0.9073
## Registry.IDAlaska/Hawaii - 1973+
0.3667
## Registry.IDAtlanta (Metropolitan) - 1975+
0.0473 *
## Registry.IDConnecticut - 1973+
0.6251
## Registry.IDDetroit (Metropolitan) - 1973+
0.2342
## Registry.IDGreater Georgia - 2000+
0.0550 .
## Registry.IDIowa - 1973+
0.7380
## Registry.IDKentucky / Rural Georgia - 1992+
0.2085
## Registry.IDLos Angeles - 1992+
0.7546
## Registry.IDLouisiana - 2000+
0.4368
## Registry.IDNew Jersey - 2000+
0.6715
## Registry.IDNew Mexico - 1973+
0.7119
## Registry.IDCalifornia SF/SJM/LA - 1973+
0.0185 *
## Registry.IDSeattle (Puget Sound) - 1974+
0.3043
## Registry.IDUtah - 1973+
0.0856 .
## Age.at.diagnosis
0.9478
## Sex2
0.2329
## Race2
0.6253
## Race3
0.9815
## Race4
0.9362
## Year.of.diagnosis
0.5624
## Tumor.location2
0.0037 **
## Tumor.location3
0.6312
## Tumor.location4
0.6021
## Tumor.location5
0.0057 **
## Tumor.location6
0.9796
## Tumor.location7
0.5927
## Tumor.location8
0.8043
## Tumor.location9
0.7889
## Tumor.location10
0.3706
## T2
0.1448
## T3
7.7e-06
***
## T4
8.7e-10
***
## T5
0.0736 .
## N2
0.0023 **
## N3
2.7e-05
***
## N4
0.9161
## N5
0.0252 *
## Grade
< 2e-16
***
## Histology2
0.0588 .
## Histology3
0.5255
## Histology4
0.0150 *
## Histology5
0.9933
## Histology6
0.5807
## Histology7
0.9998
## Histology8
0.9966
## Histology9
0.1578
## Histology10
0.1341
## Histology11
0.0704 .
## Surgery2
0.9611
## Surgery3
0.9611
## Surgery4
0.9618
## Surgery5
0.9618
## Surgery6
0.9607
## Surgery7
0.9615
## Surgery8
0.9596
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01
'*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be
1)
##
## Null deviance: 2389.7
on 2117 degrees of
freedom
## Residual deviance: 1564.6 on 2062
degrees of freedom
## AIC: 1677
##
## Number of Fisher Scoring iterations: 17
##
The IV - Geographic Region
Relevance?
not completely insignificant
No unmeasured confounders?
Exclusion restriction
can we check this?
The IV - Geographic Region
# check for exclusion restriction by running cox model
library(survival)
## Loading required package: splines
names(seer.data)[14] = "Survival.Time"
form.ph =
as.formula(paste("Surv(Survival.Time,as.numeric(Vital.status.recode))
~ Adj.RT + Registry.ID + ",
ex.ph = coxph(form.ph, data = seer.data)
## Warning: Loglik converged before variable 43,44,45 ; beta
may be infinite.
summary(ex.ph)
## Call:
## coxph(formula = form.ph, data = seer.data)
##
## n= 2118, number of events=
576
##
##
coef exp(coef) se(coef)
## Adj.RTTRUE
-1.70e-01
8.44e-01 1.15e-01
## Registry.IDAlaska/Hawaii - 1973+
5.66e-01
1.76e+00 3.53e-01
## Registry.IDAtlanta (Metropolitan) - 1975+
4.39e-03
1.00e+00 2.37e-01
## Registry.IDConnecticut - 1973+
-3.00e-01
7.41e-01 2.19e-01
## Registry.IDDetroit (Metropolitan) - 1973+
-9.78e-02 9.07e-01
1.87e-01
## Registry.IDGreater Georgia - 2000+
-2.37e-02 9.77e-01
2.43e-01
## Registry.IDIowa - 1973+
-1.65e-01
8.48e-01 2.13e-01
## Registry.IDKentucky / Rural Georgia - 1992+ -3.85e-01
6.81e-01 2.99e-01
## Registry.IDLos Angeles - 1992+
-8.54e-02
9.18e-01 1.78e-01
## Registry.IDLouisiana - 2000+
5.39e-02 1.06e+00
2.64e-01
## Registry.IDNew Jersey - 2000+
6.41e-02 1.07e+00
2.37e-01
## Registry.IDNew Mexico - 1973+
1.05e-01 1.11e+00
3.06e-01
## Registry.IDCalifornia SF/SJM/LA - 1973+
-1.50e-01 8.61e-01
1.82e-01
## Registry.IDSeattle (Puget Sound) - 1974+
4.47e-02 1.05e+00
2.05e-01
## Registry.IDUtah - 1973+
-6.31e-01
5.32e-01 2.98e-01
## Age.at.diagnosis
5.75e-02
1.06e+00 3.48e-03
## Sex2
3.16e-01
1.37e+00 9.03e-02
## Race2
-5.84e-01
5.58e-01 2.38e-01
## Race3
-1.73e-01
8.41e-01 1.35e-01
## Race4
-1.52e+00
2.19e-01 1.01e+00
## Year.of.diagnosis
-3.00e-02
9.70e-01 1.70e-02
## Tumor.location2
-3.25e-01
7.23e-01 1.96e-01
## Tumor.location3
1.66e-02 1.02e+00
3.26e-01
## Tumor.location4
-2.91e-01
7.47e-01 2.65e-01
## Tumor.location5
-2.40e-01
7.86e-01 2.91e-01
## Tumor.location6
-5.44e-02
9.47e-01 3.13e-01
## Tumor.location7
3.38e-01 1.40e+00
2.17e-01
## Tumor.location8
2.92e-01 1.34e+00
3.87e-01
## Tumor.location9
-5.50e-02
9.46e-01 2.30e-01
## Tumor.location10
-2.30e-01
7.94e-01 3.50e-01
## T2
2.13e-01
1.24e+00 1.42e-01
## T3
6.51e-01
1.92e+00 1.59e-01
## T4
6.40e-01
1.90e+00 1.29e-01
## T5
5.83e-02
1.06e+00 1.52e-01
## N2
2.46e-01
1.28e+00 2.13e-01
## N3
8.43e-01
2.32e+00 1.47e-01
## N4
1.64e+00
5.15e+00 3.98e-01
## N5
6.52e-02
1.07e+00 1.15e-01
## Grade
4.97e-01
1.64e+00 5.51e-02
## Histology2
-3.94e-01
6.74e-01 6.01e-01
## Histology3
-2.87e-01
7.51e-01 6.08e-01
## Histology4
-6.85e-01
5.04e-01 6.00e-01
## Histology5
-1.50e+01
3.11e-07 1.14e+03
## Histology6
-1.48e+01
3.69e-07 3.37e+03
## Histology7
-1.68e+01
5.06e-08 6.88e+03
## Histology8
-3.78e-01
6.85e-01 1.18e+00
## Histology9
-3.59e-01
6.98e-01 6.55e-01
## Histology10
-9.10e-01
4.03e-01 8.43e-01
## Histology11
3.31e-01
1.39e+00 6.17e-01
## Surgery2
-5.23e-01 5.93e-01
1.91e-01
## Surgery3
-4.41e-01 6.43e-01
2.90e-01
## Surgery4
-4.77e-01 6.21e-01
2.16e-01
## Surgery5
2.70e-01 1.31e+00
2.74e-01
## Surgery6
-1.13e-01 8.93e-01
1.82e-01
## Surgery7
-4.53e-01 6.36e-01
2.21e-01
## Surgery8
-1.03e+00 3.56e-01
7.30e-01
##
z
Pr(>|z|)
## Adj.RTTRUE
-1.48
0.13891
## Registry.IDAlaska/Hawaii - 1973+
1.60
0.10900
## Registry.IDAtlanta (Metropolitan) - 1975+
0.02 0.98523
## Registry.IDConnecticut - 1973+
-1.37
0.17063
## Registry.IDDetroit (Metropolitan) - 1973+
-0.52 0.60067
## Registry.IDGreater Georgia - 2000+
-0.10 0.92215
## Registry.IDIowa - 1973+
-0.78
0.43809
## Registry.IDKentucky / Rural Georgia - 1992+ -1.29
0.19810
## Registry.IDLos Angeles - 1992+
-0.48
0.63161
## Registry.IDLouisiana - 2000+
0.20 0.83821
## Registry.IDNew Jersey - 2000+
0.27 0.78732
## Registry.IDNew Mexico - 1973+
0.34 0.73073
## Registry.IDCalifornia SF/SJM/LA - 1973+
-0.82 0.41079
## Registry.IDSeattle (Puget Sound) - 1974+
0.22 0.82751
## Registry.IDUtah - 1973+
-2.12
0.03394 *
## Age.at.diagnosis
16.50
< 2e-16 ***
## Sex2
3.50
0.00047 ***
## Race2
-2.45
0.01421 *
## Race3
-1.28
0.20132
## Race4
-1.50
0.13392
## Year.of.diagnosis
-1.76
0.07762 .
## Tumor.location2
-1.65
0.09806 .
## Tumor.location3
0.05 0.95945
## Tumor.location4
-1.10
0.27199
## Tumor.location5
-0.82
0.40941
## Tumor.location6
-0.17
0.86208
## Tumor.location7
1.56 0.11811
## Tumor.location8
0.75 0.45067
## Tumor.location9
-0.24
0.81105
## Tumor.location10
-0.66
0.51094
## T2
1.51
0.13169
## T3
4.10
4.2e-05 ***
## T4
4.97
6.7e-07 ***
## T5
0.38
0.70126
## N2
1.16
0.24747
## N3
5.71
1.1e-08 ***
## N4
4.12
3.8e-05 ***
## N5
0.57
0.57101
## Grade
9.03
< 2e-16 ***
## Histology2
-0.66
0.51184
## Histology3
-0.47
0.63718
## Histology4
-1.14
0.25358
## Histology5
-0.01
0.98953
## Histology6
0.00
0.99649
## Histology7
0.00
0.99805
## Histology8
-0.32
0.74849
## Histology9
-0.55
0.58341
## Histology10
-1.08
0.28067
## Histology11
0.54
0.59084
## Surgery2
-2.74 0.00622
**
## Surgery3
-1.52 0.12859
## Surgery4
-2.21 0.02718 *
## Surgery5
0.98 0.32501
## Surgery6
-0.62 0.53421
## Surgery7
-2.05 0.04049 *
## Surgery8
-1.42 0.15682
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01
'*' 0.05 '.' 0.1 ' ' 1
##
##
exp(coef) exp(-coef) lower .95
## Adj.RTTRUE
8.44e-01
1.18e+00
0.6741
## Registry.IDAlaska/Hawaii - 1973+
1.76e+00
5.68e-01 0.8815
## Registry.IDAtlanta (Metropolitan) - 1975+
1.00e+00
9.96e-01 0.6312
## Registry.IDConnecticut - 1973+
7.41e-01
1.35e+00
0.4828
## Registry.IDDetroit (Metropolitan) - 1973+
9.07e-01
1.10e+00 0.6287
## Registry.IDGreater Georgia - 2000+
9.77e-01 1.02e+00
0.6066
## Registry.IDIowa - 1973+
8.48e-01 1.18e+00
0.5585
## Registry.IDKentucky / Rural Georgia - 1992+
6.81e-01 1.47e+00
0.3788
## Registry.IDLos Angeles - 1992+
9.18e-01
1.09e+00
0.6476
## Registry.IDLouisiana - 2000+
1.06e+00 9.47e-01
0.6288
## Registry.IDNew Jersey - 2000+
1.07e+00 9.38e-01
0.6695
## Registry.IDNew Mexico - 1973+
1.11e+00 9.00e-01
0.6103
## Registry.IDCalifornia SF/SJM/LA - 1973+
8.61e-01
1.16e+00 0.6026
## Registry.IDSeattle (Puget Sound) - 1974+
1.05e+00 9.56e-01
0.6995
## Registry.IDUtah - 1973+
5.32e-01 1.88e+00
0.2969
## Age.at.diagnosis
1.06e+00
9.44e-01
1.0520
## Sex2
1.37e+00
7.29e-01
1.1488
## Race2
5.58e-01
1.79e+00
0.3498
## Race3
8.41e-01
1.19e+00
0.6452
## Race4
2.19e-01
4.57e+00
0.0300
## Year.of.diagnosis
9.70e-01
1.03e+00
0.9387
## Tumor.location2
7.23e-01 1.38e+00
0.4920
## Tumor.location3
1.02e+00 9.84e-01
0.5362
## Tumor.location4
7.47e-01 1.34e+00
0.4446
## Tumor.location5
7.86e-01 1.27e+00
0.4444
## Tumor.location6
9.47e-01 1.06e+00
0.5128
## Tumor.location7
1.40e+00 7.13e-01
0.9176
## Tumor.location8
1.34e+00 7.47e-01
0.6273
## Tumor.location9
9.46e-01 1.06e+00
0.6030
## Tumor.location10
7.94e-01
1.26e+00
0.3996
## T2
1.24e+00
8.08e-01
0.9379
## T3
1.92e+00
5.22e-01
1.4044
## T4
1.90e+00
5.27e-01
1.4738
## T5
1.06e+00
9.43e-01
0.7870
## N2
1.28e+00
7.82e-01
0.8427
## N3
2.32e+00
4.31e-01
1.7398
## N4
5.15e+00
1.94e-01
2.3615
## N5
1.07e+00
9.37e-01
0.8518
## Grade
1.64e+00
6.08e-01
1.4762
## Histology2
6.74e-01
1.48e+00
0.2076
## Histology3
7.51e-01
1.33e+00
0.2282
## Histology4
5.04e-01
1.98e+00
0.1554
## Histology5
3.11e-07
3.22e+06
0.0000
## Histology6
3.69e-07
2.71e+06
0.0000
## Histology7
5.06e-08
1.98e+07
0.0000
## Histology8
6.85e-01
1.46e+00
0.0680
## Histology9
6.98e-01
1.43e+00
0.1936
## Histology10
4.03e-01
2.48e+00
0.0771
## Histology11
1.39e+00
7.18e-01
0.4160
## Surgery2
5.93e-01 1.69e+00
0.4074
## Surgery3
6.43e-01 1.55e+00
0.3643
## Surgery4
6.21e-01 1.61e+00
0.4064
## Surgery5
1.31e+00 7.63e-01
0.7652
## Surgery6
8.93e-01 1.12e+00
0.6249
## Surgery7
6.36e-01 1.57e+00
0.4120
## Surgery8
3.56e-01 2.81e+00
0.0850
##
upper .95
## Adj.RTTRUE
1.057
## Registry.IDAlaska/Hawaii - 1973+
3.519
## Registry.IDAtlanta (Metropolitan) - 1975+
1.598
## Registry.IDConnecticut - 1973+
1.138
## Registry.IDDetroit (Metropolitan) - 1973+
1.308
## Registry.IDGreater Georgia - 2000+
1.572
## Registry.IDIowa - 1973+
1.287
## Registry.IDKentucky / Rural Georgia - 1992+
1.223
## Registry.IDLos Angeles - 1992+
1.302
## Registry.IDLouisiana - 2000+
1.771
## Registry.IDNew Jersey - 2000+
1.698
## Registry.IDNew Mexico - 1973+
2.022
## Registry.IDCalifornia SF/SJM/LA - 1973+
1.230
## Registry.IDSeattle (Puget Sound) - 1974+
1.563
## Registry.IDUtah - 1973+
0.953
## Age.at.diagnosis
1.066
## Sex2
1.637
## Race2
0.889
## Race3
1.097
## Race4
1.596
## Year.of.diagnosis
1.003
## Tumor.location2
1.062
## Tumor.location3
1.928
## Tumor.location4
1.256
## Tumor.location5
1.392
## Tumor.location6
1.749
## Tumor.location7
2.144
## Tumor.location8
2.858
## Tumor.location9
1.486
## Tumor.location10
1.579
## T2
1.634
## T3
2.617
## T4
2.442
## T5
1.428
## N2
1.942
## N3
3.101
## N4
11.241
## N5
1.338
## Grade
1.832
## Histology2
2.189
## Histology3
2.471
## Histology4
1.634
## Histology5
Inf
## Histology6
Inf
## Histology7
Inf
## Histology8
6.908
## Histology9
2.520
## Histology10
2.102
## Histology11
4.664
## Surgery2
0.862
## Surgery3
1.136
## Surgery4
0.948
## Surgery5
2.243
## Surgery6
1.276
## Surgery7
0.981
## Surgery8
1.488
##
## Concordance= 0.853 (se = 0.013 )
## Rsquare= 0.374 (max possible= 0.979
)
## Likelihood ratio test= 991 on 56 df,
p=0
## Wald test
= 555 on 56 df,
p=0
## Score (logrank) test = 1158 on 56 df,
p=0
##
# conclusion? don't get treated for salivary gland surgery in
utah!
utah.patients = which(seer.data$Registry.ID ==
levels(seer.data$Registry.ID)[15])
seer.data = seer.data[-utah.patients, ]
seer.data$Registry.ID = factor(seer.data$Registry.ID, levels =
levels(seer.data$Registry.ID)[1:14])
# now get the fitted values for IV
Adj.RT.IV = glm(form, data = seer.data, family =
binomial)$fitted.values
seer.data$U.est = seer.data$Adj.RT - Adj.RT.IV
form.final =
as.formula(paste("Surv(Survival.Time,as.numeric(Vital.status.recode))
~ Adj.RT + U.est + ",
final.ph = coxph(form.final, data = seer.data)
## Warning: Loglik converged before variable 30,31,32 ; beta
may be infinite.
summary(final.ph)
## Call:
## coxph(formula = form.final, data = seer.data)
##
## n= 2062, number of events=
560
##
##
coef
exp(coef) se(coef)
z Pr(>|z|)
## Adj.RTTRUE
7.38e-01
2.09e+00 3.97e-01
1.86 0.06316 .
## U.est
-1.03e+00 3.57e-01
4.19e-01 -2.46 0.01399 *
## Age.at.diagnosis 5.63e-02
1.06e+00 3.49e-03 16.14
< 2e-16 ***
## Sex2
3.01e-01
1.35e+00 9.18e-02
3.28 0.00103
**
## Race2
-4.71e-01 6.25e-01
2.08e-01 -2.26 0.02388 *
## Race3
-1.47e-01 8.63e-01
1.30e-01 -1.13 0.25821
## Race4
-1.55e+00 2.12e-01
1.01e+00 -1.53 0.12488
## Year.of.diagnosis -3.44e-02 9.66e-01
1.65e-02 -2.08 0.03782 *
## Tumor.location2 -2.76e-01
7.58e-01 1.99e-01 -1.39
0.16436
## Tumor.location3 -1.03e-01
9.02e-01 3.24e-01 -0.32
0.74975
## Tumor.location4 -3.98e-01
6.72e-01 2.63e-01 -1.51
0.13121
## Tumor.location5 -5.15e-02
9.50e-01 2.96e-01 -0.17
0.86208
## Tumor.location6 -1.74e-01
8.40e-01 3.14e-01 -0.55
0.57915
## Tumor.location7
2.36e-01 1.27e+00
2.17e-01 1.09
0.27524
## Tumor.location8
1.83e-01 1.20e+00
3.96e-01 0.46
0.64479
## Tumor.location9 -8.39e-02
9.19e-01 2.32e-01 -0.36
0.71762
## Tumor.location10 -4.49e-01
6.38e-01 3.56e-01 -1.26
0.20711
## T2
1.54e-01
1.17e+00 1.43e-01
1.08 0.28225
## T3
4.77e-01
1.61e+00 1.70e-01
2.80 0.00506
**
## T4
4.81e-01
1.62e+00 1.47e-01
3.28 0.00106
**
## T5
6.47e-02
1.07e+00 1.52e-01
0.42 0.67108
## N2
1.50e-01
1.16e+00 2.21e-01
0.68 0.49785
## N3
7.38e-01
2.09e+00 1.60e-01
4.63 3.7e-06 ***
## N4
1.69e+00
5.42e+00 3.93e-01
4.30 1.7e-05 ***
## N5
9.85e-02
1.10e+00 1.17e-01
0.84 0.39898
## Grade
4.21e-01
1.52e+00 6.83e-02
6.16 7.2e-10 ***
## Histology2
-1.63e-01
8.50e-01 6.07e-01 -0.27
0.78869
## Histology3
-2.42e-01
7.85e-01 6.07e-01 -0.40
0.69017
## Histology4
-4.08e-01
6.65e-01 6.11e-01 -0.67
0.50469
## Histology5
-1.44e+01
5.61e-07 1.13e+03 -0.01
0.98980
## Histology6
-1.45e+01
5.29e-07 2.97e+03
0.00 0.99612
## Histology7
-1.67e+01
5.86e-08 6.09e+03
0.00 0.99782
## Histology8
1.17e-01
1.12e+00 1.19e+00
0.10 0.92178
## Histology9
-1.84e-01
8.32e-01 6.57e-01 -0.28
0.77963
## Histology10
-5.69e-01 5.66e-01
8.44e-01 -0.67 0.50048
## Histology11
5.06e-01
1.66e+00 6.21e-01
0.82 0.41461
## Surgery2
-1.02e+00
3.62e-01 2.84e-01 -3.57
0.00035 ***
## Surgery3
-9.91e-01
3.71e-01 3.72e-01 -2.67
0.00765 **
## Surgery4
-9.54e-01
3.85e-01 2.85e-01 -3.35
0.00080 ***
## Surgery5
-2.45e-01
7.83e-01 3.57e-01 -0.69
0.49218
## Surgery6
-7.21e-01
4.86e-01 2.99e-01 -2.41
0.01599 *
## Surgery7
-1.01e+00
3.63e-01 2.94e-01 -3.45
0.00056 ***
## Surgery8
-1.71e+00
1.81e-01 7.78e-01 -2.20
0.02791 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01
'*' 0.05 '.' 0.1 ' ' 1
##
##
exp(coef)
exp(-coef) lower .95 upper .95
## Adj.RTTRUE
2.09e+00
4.78e-01 0.9604
4.552
## U.est
3.57e-01
2.80e+00 0.1569
0.812
## Age.at.diagnosis 1.06e+00
9.45e-01
1.0507
1.065
## Sex2
1.35e+00
7.40e-01 1.1291
1.618
## Race2
6.25e-01
1.60e+00 0.4152
0.940
## Race3
8.63e-01
1.16e+00 0.6683
1.114
## Race4
2.12e-01
4.73e+00 0.0291
1.538
## Year.of.diagnosis 9.66e-01
1.03e+00
0.9354
0.998
## Tumor.location2
7.58e-01 1.32e+00
0.5137
1.120
## Tumor.location3
9.02e-01 1.11e+00
0.4775
1.703
## Tumor.location4
6.72e-01 1.49e+00
0.4009
1.126
## Tumor.location5
9.50e-01 1.05e+00
0.5314
1.698
## Tumor.location6
8.40e-01 1.19e+00
0.4536
1.556
## Tumor.location7
1.27e+00 7.89e-01
0.8284
1.937
## Tumor.location8
1.20e+00 8.33e-01
0.5521
2.611
## Tumor.location9
9.19e-01 1.09e+00
0.5834
1.449
## Tumor.location10 6.38e-01
1.57e+00
0.3178
1.282
## T2
1.17e+00
8.57e-01 0.8810
1.545
## T3
1.61e+00
6.21e-01 1.1542
2.248
## T4
1.62e+00
6.18e-01 1.2131
2.158
## T5
1.07e+00
9.37e-01 0.7913
1.438
## N2
1.16e+00
8.61e-01 0.7534
1.791
## N3
2.09e+00
4.78e-01 1.5302
2.860
## N4
5.42e+00
1.84e-01 2.5097
11.726
## N5
1.10e+00
9.06e-01 0.8778
1.387
## Grade
1.52e+00
6.57e-01 1.3322
1.741
## Histology2
8.50e-01
1.18e+00 0.2585
2.794
## Histology3
7.85e-01
1.27e+00 0.2391
2.579
## Histology4
6.65e-01
1.50e+00 0.2007
2.204
## Histology5
5.61e-07
1.78e+06 0.0000
Inf
## Histology6
5.29e-07
1.89e+06 0.0000
Inf
## Histology7
5.86e-08
1.71e+07 0.0000
Inf
## Histology8
1.12e+00
8.90e-01 0.1091
11.576
## Histology9
8.32e-01
1.20e+00 0.2297
3.015
## Histology10
5.66e-01
1.77e+00 0.1082
2.963
## Histology11
1.66e+00
6.03e-01 0.4916
5.600
## Surgery2
3.62e-01
2.76e+00
0.2077
0.632
## Surgery3
3.71e-01
2.69e+00
0.1793
0.769
## Surgery4
3.85e-01
2.60e+00
0.2205
0.673
## Surgery5
7.83e-01
1.28e+00
0.3889
1.575
## Surgery6
4.86e-01
2.06e+00
0.2706
0.874
## Surgery7
3.63e-01
2.75e+00
0.2041
0.646
## Surgery8
1.81e-01
5.53e+00
0.0393
0.831
##
## Concordance= 0.854 (se = 0.013 )
## Rsquare= 0.375 (max possible= 0.979
)
## Likelihood ratio test= 968 on 43 df,
p=0
## Wald test
= 550 on 43 df,
p=0
## Score (logrank) test = 1127 on 43 df,
p=0
##
# variance for beta_AdjRT should be the same ... testing
# boot.func.ART <- function(data,idx) { data.temp =
data[idx,] final.ph =
# coxph(form.final,data=data.temp)
# return(c(final.ph$coef[1],final.ph$var[1,1])) }
# library(boot)
# final.ph.boot =
boot(data=seer.data,statistic=boot.func.ART,R=1000)
# var.est = var(final.ph.boot$t[,1])
# z.boot = final.ph.boot$t[,1] / final.ph.boot$t[,2]
# p.val = sum(z.boot > 0) / 1000
# exp(coef(final.ph)[1] + c(-1,1) * 2 * sqrt(var.est)) [1]
0.8712999
# 5.0171531
前一篇:单边检测