加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

《任意角和弧度制》教案

(2010-04-12 08:09:53)
标签:

杂谈

 

 

 

 

 

1.1任意角和弧度制

1.1.2弧度制

邓城  增城中学

一、教学目标:

1、知识与技能

(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系.(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.

2、过程与方法

创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.

3、情态与价值

通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备.

二、教学重、难点

重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.

难点: 理解弧度制定义,弧度制的运用.

三、学法与教学用具

在我们所掌握的知识中,知道角的度量是用角度制,但是为了以后的学习,我们引入了弧度制的概念,我们一定要准确理解弧度制的定义,在理解定义的基础上熟练掌握角度制与弧度制的互化.

教学用具:计算器、投影机、三角板

四、教学设想

【创设情境】

有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)

显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.

在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.

【探究新知】

1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.

弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本,自行解决上述问题.

2.弧度制的定义

[展示投影]长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1 ,或1弧度,或1(单位可以省略不写).

3.探究:如图,半径为 的圆的圆心与原点重合,角 的终边与 轴的正半轴重合,交圆于点 ,终边与圆交于点 .请完成表格.

 

 

弧 的长

旋转的方向

的弧度数

的度数

 

逆时针方向

 

 

 

逆时针方向

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.

4.思考:如果一个半径为 的圆的圆心角 所对的弧长是 ,那么 的弧度数是多少?

角 的弧度数的绝对值是: ,其中,l是圆心角所对的弧长, 是半径.

5.根据探究中 填空:

, 度

显然,我们可以由此角度与弧度的换算了.

6.例题讲解

例1.按照下列要求,把 化成弧度:

(1)  精确值;

(2)  精确到0.001的近似值.

例2.将3.14 换算成角度(用度数表示,精确到0.001).

注意:角度制与弧度制的换算主要抓住 ,另外注意计算器计算非特殊角的方法.

7. 填写特殊角的度数与弧度数的对应表:

 

 

 

 

 

 

 

 

 

 

 

 

弧度

 

 

 

 

 

 

 

 

 

 

 

 

角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.

8.例题讲评

例3.利用弧度制证明下列关于扇形的公式:

 (1) ;       (2) ;      (3) .

其中 是半径, 是弧长, 为圆心角, 是扇形的面积.

例4.利用计算器比较 和 的大小.

注意:弧度制定义的理解与应用,以及角度与弧度的区别.

9.练习

教材 .

9.学习小结

(1)你知道角弧度制是怎样规定的吗?

(2)弧度制与角度制有何不同,你能熟练做到它们相互间的转化吗?

五、评价设计

1.作业:习题1.1 A组第7,8,9题.

2.要熟练掌握弧度制与角度制间的换算,以及异同.能够使用计算器求某角的各三角函数值.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有