加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

望向黑洞:人类首次直接观测银河中心黑洞(2)

(2012-12-04 07:41:28)
标签:

杂谈

望向黑洞:人类首次直接观测银河中心黑洞(2)

2012年11月29日 10:41   科技新时代杂志

  这个好消息让Doeleman打开了话匣子。他用了一点时间告诉这位博士后,自己在15~20年前刚刚进入甚长基线干涉测量的艰苦工作中时所面临的技术障碍。正是野外工作机会将他吸引到了天文学领域。但是正如他所说,他并非想和天文望远镜玩耍,而是认为在阿拉斯加度过冬天听上去很好玩。22岁时,他从他的家乡—俄勒冈州波特兰市的里德学院毕业,并加入了一个前往阿拉斯加为期一年的探险队,去研究极光。在那之后,他进入麻省理工学院,学习甚长基线干涉测量。之所以选择这一行,是因为对他来说,在寒冷干燥的山顶上一连工作好几个星期是一件非常有吸引力的事。

  距离和SMTO观测站的操作员通话已经过去30分钟了。Doeleman走向一部电话,然后拨了过去,确认是否穹顶已经打开并开始工作。他沉默了几秒。“你在说谎,”他说,“不,你一定是在说谎。”但看起来,似乎电话线另一头的那个人并不像是在说谎。

  “出什么事了?”控制室中的Weintroub问道。

  Doeleman挂断了电话并解释说,出于某些原因,SMTO还没有开始工作。详细情况还不清楚。但我们已经扫视了天空12遍,而且亚利桑那州的天气情况也非常不错—那里的tau值已经下降到0.05了,就像是在美国一样。在房间里踱了几步之后,Doeleman再次抓起电话过了去,询问最新的信息。“现在怎么样?”他问,“‘不好’?是不是技术方面的问题?”无声的叹息在研究人员中蔓延。

  再过两个小时,人马座A*就会出现。对观察者来说,今晚的机会比平时更好—美国航空航天局的钱德拉卫星正在参与观测,在收集了人马座A* X射线闪的数据后,它会与EHT的数据库连接,然后提供黑洞每小时的变化情况。像这样的发现至少能在重要期刊上发表一篇论文,值得在观测上投入时间、人力和金钱,因此Doeleman尽可能地控制着局面。他让望远镜操作员立即给亚利桑那州大学的主要负责人员打电话,让他马上赶到SMTO那里。“告诉他,‘我如果不打电话给你,Doeleman就会要了我的命。’”

  一个半小时过去了,Doeleman收到了一封来自亚利桑那州的电子邮件。他大声朗读出来:“今晚已经没有任何机会参与观测。”小组现在又面临着选择—现在的时间还早。是把今晚剩余的望远镜观测时间留给其他天文学家,还是让剩下的两个观测点继续工作?他们开始对情况进行评估。

  Weintroub放下笔记本电脑站起来,对Doeleman说:“你已经进入了钱德拉卫星的覆盖范围。”Doeleman点了点头。这种便利可不能随意挥霍。过了一会儿,Doeleman说:“如果钱德拉卫星监测到X射线闪,我们就可以做一些非常有趣的科学研究。”

  最后,他们决定继续。位于加利福尼亚州的CARMA开始进行观测,这个夜晚的时间将是他们的。第一次对人马座A*的扫描时间被定在了凌晨2:05。做出决定后,Doeleman瘫倒在一张铝制折叠椅上,他对我说:“你看到了,这真不容易。”

  望远镜看到的图像应该是一个被淡淡光晕包围着的暗黑圆盘

  事实上,即使是在最晴朗的夜晚,面对最纯净的天空,银河系中心及其周围的密集星团仍然是不可能用肉眼直接看到的。可见光无法穿透银河系中心的星尘云和等离子层,但是电磁波却可以做到。1932年,贝尔电话实验室的物理学家Karl Jansky注意到,无论何时,只要银河平面在地平线上升起,天空中都会出现强烈的电磁噪声。在那之后,射电天文学家已经发现几种可以更清晰地看到银河系中心的方法。

  第一种、也是最重要的一种方法和今天的视界望远镜的原理相同—通过连接多个在地理位置上间隔较大的射电望远镜来创造一个干涉仪,干涉仪进而可以将各地射电望远镜的信号波收集并叠加起来,最后形成一股更强的新信号波。上世纪60年代早期,美国国家射电天文观测站刚刚在弗吉尼亚州西部的格林班克落成,天文学家们就把包括它在内由两座观测站组成的干涉仪指向了银河系中心。1966年,在观测相对低频电磁信号的时候,他们接收到了今天所知的人马座A*发出的第一组信号。当时仪器的分辨率较低,无法进行有实质意义的观测。8年之后,格林班克的天文学家获得了更好的观测条件,这让他们能够观测到在银河系中心密度极大、极光亮的地方发出的高频电磁波。他们发现,某些类似于陀螺的物质正在银河系中心旋转,而银河系的其他部分正在围绕它运行。其中一名天文学家在8年后将这部分物质命名为人马座A*—当我们从地球上看去时,它位于人马座的中心。

  在那之后,更灵敏、功能更强大的探测器和电脑让射电天文学家能够用更高频率的电磁波、以更高的清晰度观测银河的中心。波长更短、频率更高的辐射能够提供更高的分辨率。更重要的是,由银河系中心最极端环境—视界的边缘—所发出的辐射更趋向于非常高的频率。当波长大于2毫米时,观测银河系中心就像“从结霜的浴室玻璃向外看”。Doeleman说,而当波长小于等于1毫米时,“结霜的玻璃就会奇迹般地变得清晰”。

未来世界各地的碟形天线网络

未来世界各地的碟形天线网络

  为了捕捉到那些1毫米波,天文学家需要跋山涉水。大气中的水蒸气会阻碍1毫米波的通过,因此高频射电望远镜都设在大气干燥而稀薄的位置(比如莫纳克亚火山),这里有利于1毫米波的顺利通过。目前,位于海拔5000米处智利阿塔卡玛沙漠(世界上最干燥的沙漠)中的大型毫米波阵列天文台(ALMA)正在建设之中。

  ALMA很快将成为世界上最强大的射电望远镜阵列,它有望于2015年加入EHT阵列。一旦它加入进来,将成为Doeleman跨越全球的望远镜阵列中至关重要的一站。即便有了ALMA的帮助,为了获得观测人马座A*的事件视界所需要的数据收集能力,EHT仍然需要两个、甚至更多的望远镜。EHT的工作人员还需要更新每个观测站的设备,包括目前在Haystack研究所效力的记录器。未来,它记录数据的速度将是目前速度的8倍。在这些工作完成后,他们的望远镜必须能收集到足以形成一幅图像的数据。

  就像其他射电望眼镜所生成的图像一样,这幅图像将会是一幅由天空碎片组成的地图—每个像素都代表了来自宇宙模糊区域的辐射强度。获取数据需要一个晚上,而汇总数据需要几个晚上。最后,一幅完整的图像将呈现在人们面前。

  理论学家们已经使用超级电脑预测了这幅图片的样子。如果黑洞是平静的,望远镜就会看见在黑色圆盘的四周,有一圈淡淡的光晕,就像日蚀一样。圆盘的一边可能包含着一团光,那是一个热点,一团围绕着“事件视界”运行的共生物质。如果人马座A*被发现的时候正在捕获并吞噬某些巨大的物质云,那么它看上去将会像一团火球。

  Doeleman强调说,在人马座A*的阴影出现在望远镜视野中之前,EHT将一直收集数据;而在那之后,EHT仍然需要收集多年的数据。他所能获得的望远镜越多,所形成的图像的细节就会越丰富,图像也会越清晰。然而一些理论学家认为,从科学的角度讲,图像并不是问题的关键。“我并不认为所有这一切就是为了获得一张图片,”Broderick说,“最终肯定会有一张图片,但是它并不会告诉我们太多东西。”从这个角度看,图片只是一颗奖励的糖果,而事件视界望远镜则是一个能够意外获得艺术品的科学项目。

  当地时间凌晨2:30,事件视界望远镜的2/3开始记录来自人马座A*—它正位于地平线的下方—的信号。在阅读了终端显示器上的数据流后,Primiani打破了沉寂:“朋友们,看来今晚的人马座A*非常明亮啊!”

  这个消息几乎是令人痛苦的。确实,如果获得的数据还不错,钱德拉卫星也探测到了X射线闪,那么虽然亚利桑那州的SMTO观测站没能参加观测,他们今晚也能获得一些有意义的科学发现。但是现在看来,工作人员已经只能把今晚的观测当作是一次磨练意志的机会。

  Doeleman靠在自己的办公椅上,闭上了眼睛;Weintroub躺在地上,立即进入了梦乡;其他人则依然坚守在自己的显示器前。两个半小时就在一无所获中过去了,这在意料之中—枯燥乏味对射电天文学来说是有益的。1987年,在《第一道光》这本书中,Richard Preston描述了在加利福尼亚州的帕洛马山观察站,一些当时最伟大的天文学家在控制室的电脑屏幕上,看着几十个人类从未见过的星系出现在屏幕上的场景。但是,这里的情况显然跟书中所描述的不一样。现在,EHT就像一部长时间曝光的半成品相机,它负责提供黑洞的线索和痕迹,而非实际的图片。

  凌晨5点,所有人都醒了,仍然坐在控制显示器前的Rurik Primiani开始变得焦虑起来。“我们获得的数据足够吗?”他问Doeleman。“问题的关键不是数据是否足够多,而是我们究竟有没有获得数据。”Doeleman回答说,“谁知道CARMA在做什么!当然,我非常确定SMTO做了什么。”

  事情仍没有任何进展。我突然灵光一闪,问了一个之前没问过的问题:“为什么会有黑洞?”黑洞是宇宙中你惟一能进去却出不来的地方,”Doeleman说。“从理论上说,如果你能建造一艘合适的飞船,你就能进到太阳的中心然后返回,你也可以进入一颗中子星的内部。你会说,‘哇,这里的密度真大!’”他一边说,一边像演员一样,不断晃动自己的手臂,好像试图从一个装满中子星的盒子里把自己的手臂抽出来。“但是你永远不可能从黑洞中逃出来,那里非常恐怖。”

  清晨6点以后,Doeleman叫醒那些博士后,准备关掉机器,而我和Weintroub则决定去看日出。在我们驾车前往山顶的路上,Weintroub说:“真让人泄气。”所有的准备工作、夏威夷完美的天气—这一切都被一个亚利桑那州的望远镜那里坏掉的传动马达给搞砸了。如果SMTO小组可以及时修好那台望远镜,3个观察站的天气情况良好的话,明天晚上就可以再次进行观测。“只要能获得一个理想的夜晚,一切付出都是值得的。”他说。

遥远的距离:从银河系第二旋臂中的地球所在位置,到银河系中心的黑洞,距离共为26000光年。

遥远的距离:从银河系第二旋臂中的地球所在位置,到银河系中心的黑洞,距离共为26000光年。

  科学家们估计,在银河系里可能有数百万个黑洞。某些暴烈、荒谬、难以理解的东西如果普遍存在,很容易引起我们的不安,而黑洞就是这样令人毛骨悚然的东西。它提醒着我们—我们经常看不到世界的真实面目,而只能看到它的阴影。这和哲学家们几个世纪前对我们的告诫如出一辙。

  第二天晚上,Doeleman对我说,工作进行得很不错。技术员们把在SMTO发生故障的机器修好了,3个站点的天气情况也都不错。他们得到的银河系中心的黑洞照片也比之前的要清晰。

  几个星期以后,由于想了解事件视界望远镜的情况,我给美国国家射电天文观测台的名誉主管Fred Lo打了电话,他曾经参与过人马座A*的早期观测活动。他告诉我,Doeleman和他的小组所做的事情非常艰难,但并非没有实现的可能。在冷战时期,美国天文学家和他们在苏联的同行曾共同合作,进行甚长基线干涉测量观测。当时,美国科学家需要在华盛顿停留,校准他们的原子钟,取得通关许可,然后飞往莫斯科。Doeleman和他的团队面临着很多困难,但这些总比穿越“铁幕”要简单。“这是从事这个行业的人所必须面对的问题,”他说,“这些问题总会得到解决。”

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有