三角函数公式起源
(2018-08-01 09:22:20)
标签:
数学三角函数公式起源 |
分类: 学共教 |
三角函数公式起源
“三角学”,英文Trigonometry,法文Trigonometrie,德文Trigonometrie,都来自拉丁文
Trigonometria。现代三角学一词最初见于希腊文。最先使用Trigonometry这个词的是皮蒂斯楚斯(
Bartholomeo
Pitiscus,1516-1613),他在1595年出版一本著作《三角学:解三角学的简明处理》,创造了这个新词。它是由τριγωυου(三角形)及μετρει
υ(测量)两字构成的,原意为三角形的测量,或者说解三角形。古希腊文里没有这个字,原因是当时三角学还没有形成一门独立的科学,而是依附于天文学。因此解三角形构成了古代三角学的实用基础。
早期的解三角形是因天文观测的需要而引起的。还在很早的时候,由于垦殖和畜牧的需要,人们就开始作长途迁移;后来,贸易的发展和求知的欲望,又推动他们去长途旅行。在当时,这种迁移和旅行是一种冒险的行动。人们穿越无边无际、荒无人烟的草地和原始森林,或者经水路沿着海岸线作长途航行,无论是那种方式,都首先要明确方向。那时,人们白天拿太阳作路标,夜里则以星星为指路灯。太阳和星星给长期跋山涉水的商队指出了正确的道路,也给那些沿着遥远的异域海岸航行的人指出了正确的道路。
就这样,最初的以太阳和星星为目标的天文观测,以及为这种观测服务的原始的三角测量就应运而生了。因此可以说:三角学是紧密地同天文学相联系而迈出自己发展史的第一步的。
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应(如图五
),这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦”,是弓弦的意思;称AB的一半(AC)
为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是
”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。
三角学问题的提出
三角学理论的基础,是对三角形各元素之间相依关系的认识。一般认为,这一认识最早是由希腊天文学家获得的。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。
当时,希腊天文学家为了正确地测量天体的位置。研究天体的运行轨道,力求把天文学发展成为一门以精确的观测和正确的计算为基础之具有定量分析的科学。他们给自己提出的第一个任务是解直角三角形,因为进行天文观测时,人与星球以及大地的位置关系,通常是以直角三角形边角之间的关系反映出来的。在很早以前,希腊天文学家从天文观测的经验中获得了这样一个认识:星球距地面的高度是可以通过人观测星球时所采用的角度来反映的(如图一);角度(∠ABC)越大,星球距地面(AC)就越高。
梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis
Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。
古希腊文化传播到古印度后,古印度人对三角术进行了进一步的研究。公元5世纪末的数学家阿耶波多提出用弧对应的弦长的一半来对应半弧的正弦,这个做法被后来的古印度数学家使用,和现代的正弦定义一致了。阿耶波多的计算中也使用了余弦和正割。他在计算弦长时使用了不同的单位,重新计算了0到90度中间隔三又四分之三度(3.75°)的三角函数值表。然而古印度的数学与当时的中国一样,停留在计算方面,缺乏系统的定义和演绎的证明。阿拉伯人也采用了古印度人的正弦定义,但他们的三角学是直接继承于古希腊。阿拉伯天文学家引入了正切和余切、正割和余割的概念,并计算了间隔10分(10′)的正弦和正切数值表。到了公元14世纪,阿拉伯人将三角计算重新以算术方式代数化(古希腊人采用的是建立在几何上的推导方式)的努力为后来三角学从天文学中独立出来,成为了有更广泛应用的学科奠定了基础。