加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

[转载]三大统计分布

(2020-03-17 18:04:50)
标签:

转载

算法
原文地址:三大统计分布作者:乔锦忠

F分布

 
三大抽样分布之一,是基于正态分布建立起来的。
  F分布: F分布是以统计学家R.A.Fisher姓氏的第一个字母命名的.
  F分布的用途:用于方差分析、协方差分析和回归分析等。
  (一)F分布定义为:设X、Y为两个独立的随机变量,X服从自由度为m的卡方分布,Y服从自由度为n的卡方分布,这2 个独立的卡方分布被各自的自由度除以后的比率这一统计量的分布即F=(x/m)/(y/n)服从自由度为(m,n)的F-分布,上式F服从第一自由度为m,第二自由度为n的F分布
  其密度函数如此词条所配图片(右上方)
  (二)F分布的性质
  1、它是一种非对称分布;
  2、它有两个自由度,即n1 -1和n2-1,相应的分布记为F( n1 –1, n2-1), n1 –1通常称为分子自由度, n2-1通常称为分母自由度;
  3、F分布是一个以自由度n1 –1和n2-1为参数的分布族,不同的自由度决定了F 分布的形状。
  4、F分布的倒数性质:Fα,df1,df2=1/F1-α,df2,df1
 
t分布(t-distribution)

  由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换t=,统计量t 值的分布称为t分布。

t分布特征

  1.以0为中心,左右对称的单峰分布;   2.t分布是一簇曲线,其形态变化与n(确切地说与自由度ν)大小有关。自由度ν越小,t分布曲线越低平;自由度ν越大,t分布曲线越接近标准正态分布(u分布)曲线,如图.   图 自由度为1、5、∞的t分布  对应于每一个自由度ν,就有一条t分布曲线,每条曲线都有其曲线下统计量t的分布规律,计算较复杂。  学生的t分布(或也t分布),在概率统计,是一个概率分布出现在的问题,估计是指一个通常的分布式人口时,样本大小是小。它的基础是受欢迎的学生的T -测试统计的意义之间的差异两个范例手段,为置信区间之间的差额二人口的手段。学生的t分布是一种特殊情况,对一般性的双曲分布。  推导了T型分布是由William西利高大伟于1908年首次出版,而他在工作吉尼斯啤酒厂在都柏林。他被禁止以他他个人的名义出版,因此,该文件是根据书面笔名学生。 t检验和相关的理论,成为著名的透过工作的RA余志稳,谁的所谓分配“学生的分配” 。  学生的分布情况出现时(如在几乎所有实际的统计工作)的人口标准偏差是未知的,并要估算,从数据。教科书问题的处理标准偏差,因为如果它被称为是两类:( 1 )那些在该样本规模是如此之大的一个可处理的数据为基础估计的差异,就好像它一定的,和( 2 )这些说明数学推理,在其中的问题,估计标准偏差是暂时忽略,因为这不是一点,作者或导师是当时的解释。  t分布的概述及其历史  在概率论统计学中,学生t-分布(Student's t-distribution)应用在当对呈正态分布的母群体的均值进行估计。它是对两个样本均值差异进行显著性测试的学生t测定的基础。t检定改进了Z检定(en:Z-test),不论样本数量大或小皆可应用。在样本数量大(超过120等)时,可以应用Z检定,但Z检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t检定。在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t检定。  当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。  学生t-分布可简称为t分布。其推导由威廉·戈塞1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。之后t检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布
 
卡方分布

  卡方分布 (χ2分布)是概率论统计学中常用的一种概率分布。卡方分布常用于假设检验置信区间的计算。  若n个相互独立的随机变量ξ1,ξ2,…,ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和∑ξ2i构成一新的随机变量,其分布规律称为χ2(n)分布,其中参数 n 称为自由度,自由度不同就是另一个χ2分布,正如正态分布中均值或方差不同就是另一个正态分布一样。卡方分布是由正态分布构造而成的一个新的分布。

  对于任意正整数 k, 自由度k卡方分布是一个随机变量X的机率分布

  在这个式子中,Z1, ..., Zk 是相互独立的常态变量,且每一个变量的数学平均值都为0,方差为1。也就是说X是标准常态变量的平方和。这种分布一般被记做

  χ2分布在一象限内,呈正偏态,随着参数 n 的增大,χ2分布趋近于正态分布。

  χ2分布的均值为自由度 n,记为 Eχ2=n,这里符号“E”表示对随机变量求均值;χ2分布的方差为2倍的自由度(2n),记为 Dχ2=2n,这里符号“D”表示对随机变量求方差。从χ2分布的均值与方差可以看出,随着自由度n的增大,χ2分布向正无穷方向延伸(因为均值n越来越大),分布曲线也越来越低阔(因为方差2n越来越大)。

  χ2分布具有可加性:若有K个服从χ2分布且相互独立的随机变量,则它们之和仍是χ2分布,新的χ2分布的自由度为原来K个χ2分布自由度之和。表示为:

  χ2分布是连续分布,但有些离散分布也服从χ2分布,尤其在次数统计上非常广泛。

χ2分布概率表

  χ2分布不象正态分布那样将所有正态分布的查表都转化为标准正态分布去查,在χ2分布中得对每个分布编制相应的概率值,这通过χ2分布表中列出不同的自由度来表示,在χ2分布表中还需要如标准正态分布表中给出不同 P 值一样,列出概率值,只不过这里的概率值是χ2值以上χ2分布曲线以下的概率。由于χ2分布概率表中要列出很多χ2分布的概率值,所以χ2分布中所给出的 P 值就不象标准正态分布中那样给出了400个不同的 P 值,而只给出了有代表性的13个值,因此χ2分布概率表的精度就更差,不过给出了常用的几个值,足够在实际中使用了。

  查χ2分布概率表时,按自由度及相应的概率去找到对应的χ2值。如上图所示的单侧概率χ20.05(7)=14.1的查表方法就是,在第一列找到自由度7这一行,在第一行中找到概率0.05这一列,行列的交叉处即是14.1。

  表中所给值直接只能查单侧概率值,可以变化一下来查双侧概率值。例如,要在自由度为章 7 的卡方分布中,得到双侧概率为0.05所对应的上下端点可以这样来考虑:双侧概率指的是在上端和下端各划出概率相等的一部分,两概率之和为给定的概率值,这里是0.05,因此实际上上端点以上的概率为0.05/2=0.025,用概率0.025查表得上端点的值为16,记为χ20.05/2(7)=16。下端点以下的概率也为0.025,因此可以用0.975查得下端点为1.69,记为χ21-0.05/2(7)=1.69。

  当然也可以按自由度及χ2值去查对应的概率值,不过这进往往只能得到一个大概的结果,因为χ2分布概率表的精度有限,只给了 13 个不同的概率值进行查表。例如,要在自由度为 18 的χ2分布查找 χ2=30 对应的概率,则先在第一列找到自由度 18,然后看这一行可以发现与 30 接近的有28.9与31.5,它们所在的列是0.05与0.025,所以要查的概率值应于介于0.05与0.025之间,当然这是单侧概率值,它们的双侧概率值界于0.1与0.05之间。如果要更精确一些可以采用插值的方法得到,这在正态分布的查表中有介绍。

  为什么从正态总体中抽取出的样本的方差服从χ2分布

  从正态总体进行一次抽样就相当于独立同分布的 n 个正态随机变量ξ1,ξ2,…,ξn的一次取值,将 n 个随机变量针对总体均值与方差进行标准化得(i=1,…,n),显然每个都是服从标准正态分布的,因此按照χ2分布的定义,应该服从参数为 n 的χ2分布。

  如果将中的总体均值 μ 用样本平均数 ξ 代替,即得,它是否也服从χ2分布呢?理论上可以证明,它是服从χ2分布的,但是参数不是 n 而是 n-1 了,究其原因在于它是 n-1 个独立同分布于标准正态分布的随机变量的平方和

  我们常常把一个式子中独立变量的个数称为这个式子的“自由度”,确定一个式子自由度的方法是:若式子包含有 n 个独立的随机变量,和由它们所构成的 k 个样本统计量,则这个表达式的自由度为 n-k。比如中包含ξ1,ξ2,…,ξn这 n 个独立的随机变量,同时还有它们的平均数 ξ 这一统计量,因此自由度为 n-1。

 

正态u分布

  正态分布(normal distribution)是数理统计中的一种重要的理论分布 ,是许多统计方法的理论基础。正态分布有两个参数,μ和σ,决定了正态分布的位置和形态。为了应用方便,常将一般的正态变量X通过u变换[]转化成标准正态变量u,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布(standard normal distribution),亦称u分布。   根据中心极限定理,通过上述的抽样模拟试验表明,在正态分布总体中以固定n(本次试验n=10)抽取若干个样本时,样本均数的分布仍服从正态分布,即N(μ,σ)。所以,对样本均数的分布进行u变换[],也可变换为标准正态分布N (0,1)
 

0

  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有