基于mbedTLS算法库实现国密SM2签名和验签算法
(2018-04-25 15:02:55)
标签:
ecdh国密算法sm2数字签名 |
分类: 密码学 |
网上有大量的基于OpenSSL实现的国密算法库,比如著名的GmSSL,可以直接拿来用。我自己常用的是mbedTLS的算法库,比较小巧简单,在mbedTLS的大数算法的基础上实现了国密SM2的签名和验签算法。在基于mbedTLS实现SM2签名和验签算法的过程中走过一些弯路,现在把实现的过程记录下来备忘。
国密SM2算法也是基于椭圆曲线公钥算法,椭圆曲线上的运算都是和国际算法一样的,国密SM2规范中给出了推荐曲线,所以首先需要加载国密推荐参数。
mbedTLS中使用ecp_group_load函数加载参数,需要定义一下SM2的椭圆曲线,在定义曲线参数时字节序跟SM2规范的上的顺序不一样,这里需要注意一下,当时在这里折腾了很久。
-
static
const mbedtls_mpi_uint sm2256_p[] = { -
BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), -
BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF), -
BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), -
BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF), -
};
-
static
const mbedtls_mpi_uint sm2256_a[] = { -
BYTES_TO_T_UINT_8(0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), -
BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF), -
BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), -
BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF), -
};
-
static
const mbedtls_mpi_uint sm2256_b[] = { -
BYTES_TO_T_UINT_8(0x93, 0x0E, 0x94, 0x4D, 0x41, 0xBD, 0xBC, 0xDD), -
BYTES_TO_T_UINT_8(0x92, 0x8F, 0xAB, 0x15, 0xF5, 0x89, 0x97, 0xF3), -
BYTES_TO_T_UINT_8(0xA7, 0x09, 0x65, 0xCF, 0x4B, 0x9E, 0x5A, 0x4D), -
BYTES_TO_T_UINT_8(0x34, 0x5E, 0x9F, 0x9D, 0x9E, 0xFA, 0xE9, 0x28), -
};
-
static
const mbedtls_mpi_uint sm2256_gx[] = { -
BYTES_TO_T_UINT_8(0xC7, 0x74, 0x4C, 0x33, 0x89, 0x45, 0x5A, 0x71), -
BYTES_TO_T_UINT_8(0xE1, 0x0B, 0x66, 0xF2, 0xBF, 0x0B, 0xE3, 0x8F), -
BYTES_TO_T_UINT_8(0x94, 0xC9, 0x39, 0x6A, 0x46, 0x04, 0x99, 0x5F), -
BYTES_TO_T_UINT_8(0x19, 0x81, 0x19, 0x1F, 0x2C, 0xAE, 0xC4, 0x32), -
};
-
static
const mbedtls_mpi_uint sm2256_gy[] = { -
BYTES_TO_T_UINT_8(0xA0, 0xF0, 0x39, 0x21, 0xE5, 0x32, 0xDF, 0x02), -
BYTES_TO_T_UINT_8(0x40, 0x47, 0x2A, 0xC6, 0x7C, 0x87, 0xA9, 0xD0), -
BYTES_TO_T_UINT_8(0x53, 0x21, 0x69, 0x6B, 0xE3, 0xCE, 0xBD, 0x59), -
BYTES_TO_T_UINT_8(0x9C, 0x77, 0xF6, 0xF4, 0xA2, 0x36, 0x37, 0xBC), -
};
-
static
const mbedtls_mpi_uint sm2256_n[] = { -
BYTES_TO_T_UINT_8(0x23, 0x41, 0xD5, 0x39, 0x09, 0xF4, 0xBB, 0x53), -
BYTES_TO_T_UINT_8(0x2B, 0x05, 0xC6, 0x21, 0x6B, 0xDF, 0x03, 0x72), -
BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), -
BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF), -
};
SM2的签名算法和ECC的签名过程是有区别的,SM2的过程是:
1.对待签名数据进行哈希算法(国密规范里还规定了使用用户ID,曲线参数等生成Z的过程,这里不考虑那些过程,直接处理最后哈希后的数据)
2.先生成一个SM2密钥对,私钥:k,公钥:kG = (x,y);
3.计算r = (e+x) mod n;
4.如果r=0 或者r+k=n返回步骤2;
5.s=((1+d)^-1)(k-rd) mod n ;
6.如果s=0 返回 2;
7.签名结果(r,s).
实现签名的代码如下:
-
-
-
int
mbedtls_ecdsa_sm2_sign(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s, -
const mbedtls_mpi const*d, unsigned char*buf, size_tblen, -
int(*f_rng)(void *, charunsigned *, size_t),void *p_rng) -
{
-
int ret, key_tries, sign_tries, blind_tries; -
mbedtls_ecp_point R; -
mbedtls_mpi k, e, t, l, m; -
-
if (grp->N.p == NULL) -
return(MBEDTLS_ERR_ECP_BAD_INPUT_DATA); -
-
mbedtls_ecp_point_init(&R); -
mbedtls_mpi_init(&k); mbedtls_mpi_init(&e); mbedtls_mpi_init(&t); mbedtls_mpi_init(&l); -
mbedtls_mpi_init(&m); -
-
sign_tries = 0; -
do -
{ -
-
MBEDTLS_MPI_CHK(derive_mpi(grp, &e, buf, blen)); -
-
key_tries = 0; -
do -
{ -
MBEDTLS_MPI_CHK(mbedtls_ecp_gen_keypair(grp, &k, &R, f_rng, p_rng)); -
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&l, &e, &R.X)); -
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(r, &l, &grp->N)); -
-
if (key_tries++ > 10) -
{ -
ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; -
goto cleanup; -
} -
//r+k != n -
MBEDTLS_MPI_CHK((mbedtls_mpi_add_mpi(&m, r, &k))); -
} while ((mbedtls_mpi_cmp_int(r, 0) == 0)|| (mbedtls_mpi_cmp_mpi(&m, &grp->N) == 0)); -
-
blind_tries = 0; -
do -
{ -
size_t n_size = (grp->nbits + 7) / 8; -
MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&t, n_size, f_rng, p_rng)); -
MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&t, 8 * n_size - grp->nbits)); -
-
-
if (++blind_tries > 30) -
return(MBEDTLS_ERR_ECP_RANDOM_FAILED); -
} while (mbedtls_mpi_cmp_int(&t, 1) < 0 || -
mbedtls_mpi_cmp_mpi(&t, &grp->N) >= 0); -
-
-
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(s, r, d)); //s = r*d -
MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(s, &k, s)); //s = k - s -
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(s, s, &t));//s = s*t -
MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&l, d, 1));//l = 1+d -
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&l, &l, &t));//l=l*t -
MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&l, &l, &grp->N));// l = l^-1 -
MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(s, s, &l));//s = s * l -
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(s, s, &grp->N));//s mod n -
-
if (sign_tries++ > 10) -
{ -
ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; -
goto cleanup; -
} -
// -
} while (mbedtls_mpi_cmp_int(&t, 1) < 0 || -
mbedtls_mpi_cmp_mpi(&t, &grp->N) >= 0); -
cleanup:
-
mbedtls_ecp_point_free(&R); -
mbedtls_mpi_free(&k); mbedtls_mpi_free(&e); mbedtls_mpi_free(&t); -
mbedtls_mpi_free(&l); mbedtls_mpi_free(&m); -
return (ret); -
}
-
-
-
int
mbedtls_ecdsa_sm2_sign_det(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s, -
const mbedtls_mpi const*d, unsigned char*buf, size_tblen, -
mbedtls_md_type_t md_alg) -
{
-
int ret; -
mbedtls_hmac_drbg_context rng_ctx; -
unsigned char data[2 * MBEDTLS_ECP_MAX_BYTES]; -
size_t grp_len = (grp->nbits + 7) / 8; -
const mbedtls_md_info_t *md_info; -
mbedtls_mpi h; -
-
if ((md_info = mbedtls_md_info_from_type(md_alg)) == NULL) -
return(MBEDTLS_ERR_ECP_BAD_INPUT_DATA); -
-
mbedtls_mpi_init(&h); -
mbedtls_hmac_drbg_init(&rng_ctx); -
-
-
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(d, data, grp_len)); -
MBEDTLS_MPI_CHK(derive_mpi(grp, &h, buf, blen)); -
MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&h, data + grp_len, grp_len)); -
mbedtls_hmac_drbg_seed_buf(&rng_ctx, md_info, data, 2 * grp_len); -
-
ret = mbedtls_ecdsa_sm2_sign(grp, r, s, d, buf, blen, -
mbedtls_hmac_drbg_random, &rng_ctx); -
-
cleanup:
-
mbedtls_hmac_drbg_free(&rng_ctx); -
mbedtls_mpi_free(&h); -
-
return(ret); -
}
然后实现SM2的验证签名算法,同样SM2的验证过程跟ECC也有差别,验证过程如下:
1.e = hash(m);
2.计算t = (r + s) mod n,如果t=0验签失败;
3.计算椭圆曲线上的点(x,y) = sG + tP
4.计算R = (e + x) mod n 如果R=r那么签名正确,否则签名验证失败.
实现验证签名代码如下:
-
-
int
mbedtls_ecdsa_sm2_verify(mbedtls_ecp_group *grp, -
const unsigned char*buf, size_tblen, -
const mbedtls_ecp_point const*Q, mbedtls_mpi const*r, mbedtls_mpi *s) -
{
-
int ret; -
mbedtls_mpi e, s_inv, u1, u2, t, result; -
mbedtls_ecp_point R; -
-
mbedtls_ecp_point_init(&R); -
mbedtls_mpi_init(&e); mbedtls_mpi_init(&s_inv); mbedtls_mpi_init(&u1); mbedtls_mpi_init(&u2); -
mbedtls_mpi_init(&t); mbedtls_mpi_init(&result); -
-
-
if (grp->N.p == NULL) -
return(MBEDTLS_ERR_ECP_BAD_INPUT_DATA); -
-
-
if (mbedtls_mpi_cmp_int(r, 1) < 0 || mbedtls_mpi_cmp_mpi(r, &grp->N) >= 0 || -
mbedtls_mpi_cmp_int(s, 1) < 0 || mbedtls_mpi_cmp_mpi(s, &grp->N) >= 0) -
{ -
ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; -
goto cleanup; -
} -
-
-
MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, Q)); -
-
-
MBEDTLS_MPI_CHK(derive_mpi(grp, &e, buf, blen)); -
-
-
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&t, r, s)); -
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&t, &t, &grp->N)); -
if (mbedtls_mpi_cmp_int(&t, 0) == 0) -
{ -
ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; -
goto cleanup; -
} -
-
MBEDTLS_MPI_CHK(mbedtls_ecp_muladd(grp, &R, s, &grp->G, &t, Q)); -
-
MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&e, &e, &R.X)); -
MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&result, &e, &grp->N)); -
-
if (mbedtls_mpi_cmp_mpi(&result, r) != 0) -
{ -
ret = MBEDTLS_ERR_ECP_VERIFY_FAILED; -
goto cleanup; -
} -
// -
cleanup:
-
mbedtls_ecp_point_free(&R); -
mbedtls_mpi_free(&e); mbedtls_mpi_free(&s_inv); mbedtls_mpi_free(&u1); mbedtls_mpi_free(&u2); -
mbedtls_mpi_free(&t); mbedtls_mpi_free(&result); -
return(ret); -
}