2018.10.10.国际著名数学专业期刊(JMSS)刊登《四色定理》
(2018-10-10 02:13:21)
标签:
相对论应用黎曼函数教育交流互动 |
分类: 科学论坛 |
基于多项式-圆对数方程分析四色定理
【摘要】 四色定理又称四色猜想、四色问题,是世界近代三大数学难题之一。1852年Augustus De Morgan(1806-1871)提出的古老数学难题,它显而易见。目前除计算机外,一直没有数学文字证明。要求无穷图块以四种颜色,无限地不重复的“四四组合”具有传统数学的严谨证明。定义任意不重复的四种颜色组合,周围都有一条封闭曲线围合的区域称图块,具有最终的封闭曲线围成的图块称图形。提出图形与图块都可以组成任意高幂多项式方程;应用相对性原理转换为一种“没有具体元素(图形、图块、空间、数值、大数据)内容的圆对数方程,进行算术四则运算,称“圆对数(相对论构造)”。圆对数阐述了图块内数学组合集合与层次之间的关系,具有同构性、单元性、互逆性及层次转换的极限性,满足数学严谨的要求,可以替代计算机经100亿次计算的证明。
【关键词】
【中图分类号】
——————————————————————————————————————————————
作者介绍:[]] 汪弘轩
省衢州市第二中学高二学生
1、引言
四色定理又称四色猜想、四色问题,是世界近代三大数学难题之一。四色定理(Four color theorem)是由一位叫古德里Francis Guthrie的英国大学生在地图填色中提出来的。德·摩尔根(Augustus De Morgan)(1806-1871)1852年10月23日致哈密顿的一封信提供了有关四色定理来源的最原始的记载。一个半世纪以来数学家们为证明这条定理,其数学意义都与当代数学组合、图论、拓扑、概论、分形、集合,以及计算机计算基础等有密切联系,所引进的概念与方法,刺激了拓扑学与图论的生长、发展。
1975年Bemanh-Hartmanis猜想存在一对G(·)和F(·)具有互逆性。若证明成立,则都是多项式时间可算的,具有多项式时间同构性【1】。
1983年中国数学家徐利治在《数学方法论选讲》说:微积分多项式的要点是连续性正则化展开[2]。如果谁能对一些十分重要的关系结构(S),巧妙地引进非常有用,具有G(·)与F(·)能行性反演的,就能做出重要贡献[3]。
四色定理在于无穷图块下,进行无限不重复“四四组合”存在的充分性、必要性、唯一性证明。数学家们大多认为依靠现有的传统数学体系解决不了,至少是很艰难。1976年及1994年美国数学家K.Appel与W.Haken宣告借助电子计算机获得了四色定理的证明;通过计算机,历经100亿幂(幂维次)计算证明。数学家们期望传统的简单数学证明。
本文提出“任意四色不重复组合拼接的图块,外加一条最终封闭曲线”成为多项式,转换为“没有具体元素(颜色)内容的抽象的圆对数方程,进行算术四则运算。称“圆对数(相对论构造)”。方便地证明四色定理,替代1976年美国计算机经100亿次计算的证明。
希望本文能对国内外相关学者、老师、学长们能够提供有益的帮助。不当之处敬请批评教正,欢迎交流合作。
"Science Stays True Here"
Journal of Mathematics and Statistical Science, 361-377 | Science Signpost Publishing
Analysis of Four Color Theorem Based on
Polynomial-Circular Logarithmic Equation
Wang Hongxuan 1 , Zhou Yiyi 2 , Wang Yiping 3
Abstract
The four-color theorem, also known as the four-color conjecture and the four-color problem, is
one of the three major mathematical problems in the modern world. The Four color theorem was
proposed by a British college student named Goodrich Francis Guthrie in the map coloring. Augustus
De Morgan (1806-1871) A letter to Hamilton on October 23, 1852, provided the most original account
of the source of the four-color theorem. For a century and a half, in order to prove this theorem,
mathematicians are closely related to contemporary mathematical combination, graph theory, topology,
generalization, fractal, collection, and computer computing foundation. The concepts and methods
introduced are stimulated. The growth and development of topology and graph theory.
In 1975, Bemanh-Hartmanis conjectured that there is a pair of G(•) and F(•) reciprocal. If the
proof is true, then the polynomial time can be
calculated, with polynomial time isomorphism
In 1983, Chinese mathematician Xu Lizhi said in the "Selection of Mathematical Methodology"
that the main point of calculus polynomial is continuous regularization [2] . If anyone can make a very
useful relationship structure (S), it is very useful to introduce it, and G(•) and F(•) can perform
important inversions
The four-color theorem lies in the sufficiency, necessity, and uniqueness proof of the infinite
non-repetition of the "four-four combination" under the infinite block. Most mathematicians think that
relying on the existing traditional mathematics system can't solve it, at least it is very difficult. In 1976
and 1994, American mathematicians K. Appel and W. Haken announced the use of electronic
computers to obtain the proof of the four-color theorem; through the computer, after 100 billion power
(power dimension) calculation.
Mathematicians expect traditional simple mathematical proofs. In this paper, we propose that "any
four-color non-repetitive combination of spliced tiles, plus a final closed curve" becomes a polynomial,
converted into "abstract circular logarithmic equation without specific element (color) content, and
arithmetic four operations. Number (relativistic construction). Conveniently prove the four-color
theorem, replacing the 1976 American computer with 10 billion calculations.
I hope this article can provide useful help to relevant scholars, teachers and seniors at home and
abroad. If you are not good, please criticize and teach, and welcome exchanges and cooperation.
Keywords: high-order multivariable polynomial, four-color theorem, combination coefficient, average
of block, round logarithm
——————————————————————————————————————————————
About the author: 1. Wang Hongxuan Gao Yi (eight) student of Jiangshan Experimental High School,
Zhejiang Province, Zhangzhou 324100, China ; 2. Zhou Yuyi, Gao Er (5) student, No. 2 Middle School,
Shengzhou, Zhejiang Province, Zhangzhou 324000; 3. Wang Yiping Instructor Senior Engineer,
Quzhou City, Senior Engineer Engaged in Mathematics and Power Engineering Research and Teaching
Zhejiang Quzhou 324000; Corresponding author: wyp3025419@163.com
361