加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

探索自由天空博客(二十一):2、美国克雷数学研究所的“21世纪七大数学难题”(A)

(2015-04-06 11:05:10)
标签:

黎曼函数

相对论应用

教育

交流

互动

分类: 黎曼函数

探索自由天空博客(二十一):解读与破解黎曼猜想—数学中最大的未解之谜(科普版)

2美国克雷数学研究所“21世纪七大数学难题A

   1967年美国数学家郎兰兹提出了各种数学分支的相互交叉性和渗透性,猜想大自然可能存在人类至今还没有掌握的一个统一的计算规则。1983年中国数学家徐利治《数学方法论选讲》提出了这个新的统一的计算规则的核心应该是:完备性、完整性、自冾性的“同构映射”。它在哪里呀?多项式同构映射成为大家关注的课题。

2000年初美国克雷数学研究所的科学顾问委员会选定了七个“21世纪七个数学难题”。称“千年大奖问题”,决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得一百万美元的奖励。其要点是希望世界上能有那个国家、那个人从破解中“发现或拓展新的数学分析方法”。 “千年大奖问题”的选定,也不是一定是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。

    2000年5月24日,千年数学会议在著名的法兰西学院举行。会上97年费尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的详述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。其中有一个已被解决(庞加莱猜想),还剩六个。(庞加莱猜想,已由俄罗斯数学家格里戈里·佩雷尔曼破解。)

“千年大奖问题”公布以来, 在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。“千年大奖问题” 将会改变新世纪数学发展的历史进程。

1)、 P-NP完全问题

在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。宴会的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现宴会的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的“NP = P?”的猜想。 不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。

2)、黎曼猜想(黎曼假设)

   有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s)的性态。断言,方程ζ (s) = 0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立,将为围绕素数分布的许多奥秘带来光明。

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有