加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

最小二乘法原理及公式

(2010-05-16 14:45:23)
标签:

it

分类: 转载

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达

最小二乘法(least square)历史简介http://imgsrc.baidu.com/baike/abpic/item/35da1d3b5399f0f915cecbe4.jpg

  1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。

  高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。

  法国科学家勒让德于1806年独立发现“最小二乘法”。但因不为时人所知而默默无闻。

  勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。

  1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-莫卡夫定理。(来自于wikipedia)

最小二乘法原理

        用各个离差的平方和M=Σ(i=1到n)[yi-(axi+b)]^2最小来保证每个离差的绝对值都很小。解方程组∂M/∂a=0;∂M/∂b=0,整理得(Σxi^2)a+(Σxi)b=Σxiyi;(Σxi)a+nb=Σyi。解出a,b。

  在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中, 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。

  Y计= a0 + a1 X (式1-1)

  其中:a0、a1 是任意实数

  为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。

  令: φ = ∑(Yi - Y计)2 (式1-2)

  把(式1-1)代入(式1-2)中得:

  φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)

  当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。

  (式1-4)

  (式1-5)

  亦即:

  m a0 + (∑Xi ) a1 = ∑Yi (式1-6)

  (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)

  得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:

  a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)

  a1 = [n∑Xi Yi - (∑Xi ∑Yi)] / [n∑Xi2 - (∑Xi)2 )] (式1-9)

  这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。

  在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。

  R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *

  在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。

 

最小二乘法公式:
 

∑(X--X平)(Y--Y平) 
  =∑(XY--X平Y--XY平+X平Y平)

  =∑XY--X平∑Y--Y平∑X+nX平Y平
  =∑XY--nX平Y平--nX平Y平+nX平Y平
  =∑XY--nX平Y平
  ∑(X --X平)^2
  =∑(X^2--2XX平+X平^2)
  =∑X^2--2nX平^2+nX平^2
  =∑X^2--nX平^2
  最小二乘公式(针对y=ax+b形式):
  a=(NΣxy-ΣxΣy)/(NΣx^2-(Σx)^2)
  b=y(平均)-ax(平均)
  最小二乘法
  在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。
  Y计= a0 + a1 X (式1-1)
  其中:a0、a1 是任意实数
  为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。
  令: φ = ∑(Yi - Y计)2 (式1-2)
  把(式1-1)代入(式1-2)中得:
  φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)
  当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。
  (式1-4)
  (式1-5)
  亦即:
  m a0 + (∑Xi ) a1 = ∑Yi (式1-6)
  (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)
  得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:
  a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)
  a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9)
  这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。
  在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。
  R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *
  在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一 最小二乘法
  从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求 与 之间近似成线性关系时的经验公式. 假定实验测得变量之间的个数据 , , …, , 则在 平面上, 可以得到 个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为 与 之间近似为一线性函数, 下面介绍求解步骤.
  考虑函数 , 其中 和 是待定常数. 如果 在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线 来描述 , 时, 计算值 与实际值 产生的偏差. 当然要求偏差越小越好, 但由于 可正可负, 因此不能认为总偏差 时, 函数 就很好地反映了变量之间的关系, 因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用来代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用 来度量总偏差. 因偏差的平方和最小可以保证每个偏差都不会很大. 于是问题归结为确定 中的常数 和 , 使 为最小. 用这种方法确定系数 , 的方法称为最小二乘法.
  由极值原理得 , 即
  解此联立方程得
  (*)
  问题 I 为研究某一化学反应过程中, 温度 ℃)对产品得率 (%)的影响, 测得数据如下:
  温度 ℃)
  100 110 120 130 140 150 160 170 180 190
  得率 (%)
  45 51 54 61 66 70 74 78 85 89
  (1) 利用“ListPlot”函数, 绘出数据 的散点图(采用格式: ListPlot[{ , , …, }, Prolog->AbsolutePointSize[3]] );
  (2) 利用“Line”函数, 将散点连接起来, 注意观察有何特征? (采用格式: Show[Graphics[Line[{ , , …, }]] , Axes->True ]) ;
  (3) 根据公式(*), 利用“Apply”函数及集合的有关运算编写一个小的程序, 求经验公式 ;
  (程序编写思路为: 任意给定两个集合A (此处表示温度)、B(此处表示得率), 由公式(*)可定义两个二元函数(集合A和B为其变量)分别表示 和 . 集合A元素求和: Apply[Plus,A] 表示将加法施加到集合A上, 即各元素相加, 例如Apply[Plus,{1,2,3}]=6;Length[A]表示集合A 元素的个数, 即为n; A.B表示两集合元素相乘相加;A*B表示集合A与B元素对应相乘得到的新的集合.)
  (4) 在同一张图中显示直线 及散点图;
  (5) 估计温度为200时产品得率.
  然而, 不少实际问题的观测数据 , , …, 的散点图明显地不能用线性关系来描叙, 但确实散落在某一曲线近旁, 这时可以根据散点图的轮廓和实际经验, 选一条曲线来近似表达 与 的相互关系.
  问题 II 下表是美国旧轿车价格的调查资料, 今以 表示轿车的使用年数, (美元)表示相应的平均价格, 求 与之间的关系.
  使用年数
  1 2 3 4 5 6 7 8 9 10
  平均价格
  2651 1943 1494 1087 765 538 484 290 226 204
  (1) 利用“ListPlot”函数绘出数据 的散点图, 注意观察有何特征?
  (2) 令 , 绘出数据 的散点图, 注意观察有何特征?
  (3) 利用“Line”函数, 将散点 连接起来, 说明有何特征?
  (4) 利用最小二乘法, 求 与 之间的关系;
  (5) 求 与 之间的关系;
  (6) 在同一张图中显示散点图 及 关于 的图形.

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有