考研数学:一元与二元函数的可微可导和连续
(2012-11-29 14:36:55)
标签:
新东方曲线必然层次考研数学教育 |
分类: 考研 |
考研数学:一元与二元函数的可微可导和连续
一元函数和二元函数在连续,可微,可导虽然从书上看性质不太一样但这决不违背定理,两个之间有莫大的关系。
一元函数和二元函数的连续都要求极限存在且等于函数值,不同就是因为不同元函数因为空间的分布不同决定了极限的趋近方式不同,因为一元只有x是一条轴,一根线,那么教材上强调的更多是左右趋近,其实另一角度看,正如概念区别1来说其实方式也有很多,因为别看只是一条轴它却有无穷多个点,极限是要求连续取的,可是为了区别,我们有时候会跳跃取。正如数列极限中2n,2n+1,只有同时取尽才保证极限存在,而二元函数分布于一个平面这就决定了方向的无穷性了,随意一个一元函数都可以决定一个方向y=x,y=x^2等等,作为一条曲线可以作为一条方向只要它过所确定的点即可,一元函数其实就是沿着(x,0)对二元函数的极限,这也就说明二元函数连续,那么在该点确定的一元函数也连续。举个例子f(x,y)在0,0连续,那么f(x,0)肯定在x=0连续,一般到特殊,但是反之却不可以,这也从一定程度说明证明二元函数不连续,可以选取不同y,x关系,极限不同则不连续。
可导,一元函数中有可导必连续,这是因为导数的定义决定了极限只能是0/0型的极限,自变量趋近,函数必然趋近,可导必连续,可是二元函数却没有可导必连续,为什么呢?那是因为二元函数中的可导指的是偏导,偏导就说明是作为一元函数求导的,尽管它是二元的,既然作为一元函数求导,根据一元函数可导必连续概念,我们自然会有连续的概念,不过这里的连续不是说二元函数连续,而是它作为一元函数连续,什么意思呢?还是上面说的f(x,y)在0,0处对x偏导存在,说明f(x,0)在x为0处连续而不是f(x,y)在x,y=0,0连续,因为连续作用的单位不是整个二元函数,而二元函数中的某个小分支是一元函数,连续只作用到一个分支上了。
再说可微,因为一元和二元函数的可微定义是不一样的,一元函数定义可微和导数关系拉的很近,Δx将它们穿在一块,有着可微等价于可导的结论,这也是极限定义。而二元函数定义可微时则是将Δx,Δy同时定义在内,无穷小也与两者都相关,所以单从二元函数可导〔偏导〕不能得到可微,因为偏导只是和某个有关,既然涉及两个那么两个关系没那么大了,可微是更深层次考察函数,单从定义式我们就可以得到两个结论,1连续(x趋近x0,y趋近y0试试),2可导〔另某个Δ为0再对照定义〕
从分析看,其实一元和二元差别之处就在于定义不同,研究范围不同,你如果把二元特殊为一元研究一元函数的性质它都有了。
前一篇:大学英语四级练习提高-答案及解析
后一篇:英语六级写作范文背诵