在整数除法中,余数可不可以为"0"
(2011-11-30 09:31:40)
标签:
法中余数整除对立统一正整数校园 |
分类: 学子园地 |
不少小学数学教师问过我这样一个问题:“在整数除法中,余数可不可以为0?”这个问题早有定论,于是我不假思索地肯定作答:“余数当然可以为0。”
二、解惑所需的思辨
要用对立统一的观点看待0
众所周知,当盘子中连一个桃子都没有时,我们就说这盘中桃子的个数为0。从这个意义上讲,0是空集的基数,0表示“没有”。然而,0又是一个确定的数,它是自然数列的起始数,它既不是正数,也不是负数,它是唯一的中性数。从这个意义上讲,0又表示“有”。这一点不难理解。比方说,小明在黑板上写了一个“0”,你总不能说他什么都没写吧!再比方说,某地某时的气温为0摄氏度,你总不能说该地该时没有温度吧!所以,我们应该用对立统一的辩证观点看待0,懂得0既可表示“无”,又可表示“有”。用这一观点考察整数除法,我们不难发现,当15÷5时,得到整数商3,既可以说“没有余数”,也可以说“余数为0”,这两种说法是完全等价的,因而都是正确的。
附:《小学数学教师手册》(人民教育出版社,1982年)第49页有如下表述:
“判定一个整数能不能被另一个正整数整除,只需进行除法运算即可。如果所得的余数为0,就是整除的情况;如果所得的余数不为0,就是不能整除的情况。例如:
①a=91,b=13。a÷b=91÷13,商7余0。这表明91=13×7。即91能被13整除。
②a=97,b=19。97÷19商5余2。所以97不能被19整除。
一般地,对于整数a和正整数b,如果进行除法a÷b得商q,余数为r,就有a=bq+r。其中0≤r<b
(余数不为零的商为不完全商,余数为零时的商为完全商)
整除就是若整数“a” 除以大于0的整数“b”,商为整数,且余数为零。我们就说a能被b整除(或说b能整除a),记作b|a,读作“b整除a”或“a能被b整除”.注意a or b作除数的其一为0则不叫整除
整除的规律
整除规则第一条(1):任何数都能被1整除。
整除规则第二条(2):个位上是2、4、6、8、0的数都能被2整除。
整除规则第三条(3):每一位上数字之和能被3整除,那么这个数就能被3整除。
整除规则第四条(4):最后两位能被4整除的数,这个数就能被4整除。
整除规则第五条(5):个位上是0或5的数都能被5整除。
整除规则第六条(6):一个数只要能同时被2和3整除,那么这个数就能被6整除。
整除规则第七条(7):把个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数,则原数能被7整除。
整除规则第八条(8):最后三位能被8整除的数,这个数就能被8整除。
整除规则第九条(9):每一位上数字之和能被9整除,那么这个数就能被9整除。
整除规则第十条(10):若一个整数的末位是0,则这个数能被10整除
整除规则第十一条(11):将一个数从右往左数,将奇数位上的数与偶数位上的数分别相加,然后将两个数的和相减,如果差值能被11整除(包括差值为0)则原数可以被11整除。
整除规则第十二条(12):若一个整数能被3和4整除,则这个数能被12整除。
整除规则第十三条(13):若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
整除规则第十四条(14):a 若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。b 若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。
整除规则第十五条(15):a 若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。b 若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。
整除规则第十六条(16):若一个整数的末四位与前面5倍的隔出数的差能被23整除,则这个数能被23整除
整除规则第十七条(17):若一个整数的末四位与前面5倍的隔出数的差能被29整除,则这个数能被29整除
整除规则第十八条(18):若一个整数的末四位与前面的数的差能被73整除,则这个数能被73整除
整除规则第十九条(19):若一个整数的末四位与前面的数的差能被137整除,则这个数能被137整除
整除规则第二十条(20):若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除
整除规则第二十一条(21):若一个整数的末5位与前面的数的差能被9091整除,则这个数能被9091整除
整除规则第二十二条(22):(9的无敌乱切)把一个整数分成若干段之和能被9整除,则这个数能被9整除
整除规则第二十三条(23):(11的无敌乱切)把一个整数分成若干段,每段的末尾为奇数位加,偶数位减,结果能被11整除,则这个数能被11整除
整除规则第二十四条(24):(a)若一个整数的末4位与前面的数的和能被101整除,则这个数能被101整除
(b)若一个整数的末2位与前面的数的差能被101整除,则这个数能被101整除
切记:0 不能做除数!