作者: Sam(甄峰) sam_code@hotmail.com
ppcls\arch\backbone\legendary_models中是各种backbone的定义点。
ppcls\data\preprocess\ops是对图像进行预处理的定义点。
Sam希望增加一个数据增强的方法:
在ppcls\data\preprocess\ops\operators.py中:
class RandColorImage(object):
""" random color
image
brightness=0.5, contrast=0.5, saturation=0.5,
hue=0.5
"""
def __init__(self,
brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5):
self.brightness = brightness
self.contrast = contrast
self.saturation = saturation
self.hue = hue
def __call__(self,
img):
transform = ColorJitter(self.brightness,
self.contrast, self.saturation, self.hue)
image_after_transform =
transform(img)
return image_after_transform
在ppcls\data\preprocess\__init__.py中添加:
from ppcls.data.preprocess.ops.operators import
RandColorImage
既可以在PPLCNet_x0_75.yaml中使用这个功能:
PaddleClas学习四
作者: Sam(甄峰) sam_code@hotmail.com
ppcls\arch\backbone\legendary_models中是各种backbone的定义点。
ppcls\data\preprocess\ops是对图像进行预处理的定义点。
Sam希望增加一个数据增强的方法:
在ppcls\data\preprocess\ops\operators.py中:
class RandColorImage(object):
""" random color image
brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5
"""
def __init__(self, brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5):
self.brightness = brightness
self.contrast = contrast
self.saturation = saturation
self.hue = hue
def __call__(self, img):
transform = ColorJitter(self.brightness, self.contrast, self.saturation, self.hue)
image_after_transform = transform(img)
return image_after_transform
在ppcls\data\preprocess\__init__.py中添加:
from ppcls.data.preprocess.ops.operators import RandColorImage
既可以在PPLCNet_x0_75.yaml中使用这个功能: