(一)有关公式:
(1)η(z)=∑(n=1…∞) (-1)n-1n-z=(1-21-z)ζ(z)
(2)lnΓ(1-z)=γz+∑(k=1…∞)ζ(k)zk/k
(3)(-1)ln(1-z)=∑(n=1…∞)zn/n
(4)tan(xπ)=(xπ)Π(n=1…∞)(1-4x2/n2)(-1)^n
(5)sin(xπ)=(xπ)Π(n=1…∞)(1-x2/n2)
(二)后进求法:
η′(0)=∑(n=1…∞) (-1)nlnn
=∑(n=1…∞) (-1)n+1ln(n+1)
=(-1)∑(n=1…∞) (-1)nlnn+∑(n=1…∞) (-1)n+1ln(1+1/n)
2η′(0)=∑(n=1…∞) (-1)n+1ln(1+1/n)
=∑(n=1…∞) [(-1)n∑(k=1…∞)(-1/n)k/k]
=∑(k=1…∞) [(-1)k-1(1/k)∑(n=1…∞)(-1)n-1/nk]
=∑(k=1…∞) (-1)k-1η(k)/k
=ln2-∑(k=2…∞) (-1)k(1-21-k)ζ(k)/k
=ln2-∑(k=2…∞) (-1)kζ(k)/k+2∑(k=2…∞) (-1/2)kζ(k)/k
=ln2-lnΓ(2)-γ+2lnΓ(1+1/2)+γ=ln(π/2)
∴ η′(0)=(1/2)ln(π/2)
(二)双进求法:
(1)η′(0)=∑(n=1…∞) (-1)nlnn
=∑(n=1…∞) (-1)n+1ln(n+1)(后进法)
=(-1)∑(n=1…∞) (-1)nlnn+∑(n=1…∞) (-1)n+1ln(1+1/n)
∴
2η′(0)=∑(n=1…∞) (-1)n+1ln(1+1/n)……………… ①
(2)η′(0)=∑(n=1…∞) (-1)nlnn
=∑(n=2…∞) (-1)n-1ln(n-1)(前进法)
=(-1)∑(n=1…∞) (-1)nlnn+∑(n=2…∞) (-1)n-1ln(1-1/n)
∴
2η′(0)=∑(n=2…∞) (-1)n-1ln(1-1/n)……………… ②
(3)由①+②得:
4η′(0)=ln2-∑(n=2…∞) (-1)nln(1-1/n2)………………
③
(4)由公式:
tan(xπ)=(xπ)Π(n=1…∞)(1-4x2/n2)(-1)^n
取对数并令x→1/2得:
∑(n=2…∞) (-1)nln(1-1/n2)=3ln2-2lnπ
代入③中化简得:
η′(0)=(1/2)ln(π/2)
(三)直接求法:
(1)由公式:
sin(xπ)=(xπ)Π(n=1…∞)(1-x2/n2)
令x=1/2得:Π(n=1…∞)[4n2/(4n2-1)]=π/2
取对数得:∑(n=1…∞)[2ln(2n)-ln(2n-1)-ln(2n+1)]
=∑(n=1…∞)[2ln(2n)-2ln(2n+1)]=ln(π/2)
即
∑(n=1…∞)[ln(2n)-ln(2n+1)]=(1/2)ln(π/2)
(2)η′(0)=∑(n=1…∞) (-1)nlnn
=∑(n=2…∞) (-1)nlnn
=∑(n=1…∞)[ln(2n)-ln(2n+1)]
=(1/2)ln(π/2)
加载中,请稍候......