无原定积分的求法归纳
(2015-08-07 17:57:35)
标签:
留数积分法级数积分参数 |
分类: 数学 |
一、回归变换法:
∴
二、参数求导法:
F(t)=∫(0,1)[(xt-1)/(lnx)]dx,
∵
∴
三、双重积分法:
(1)[∫(0,∞)e-x^2dx]2=∫(0,∞)e-x^2dx*∫(0,∞)e-y^2dy
(2)F(t)=∫(0,1)[(xt-1)/(lnx)]dx=∫(0,1)∫(0,t)xydydx
(3)
四、级数变换法:
∫(0,∞)e-(ax)^2ch(2bx)dx=∫(0,∞)e-(ax)^2[∑(n=0…∞)(2bx)2n/(2n)!]dx
=∑(n=0…∞){[(2b)2n/(2n)!]∫(0,∞)e-(ax)^2x2ndx}(令(ax)2=y,a>0)
=[1/(2a)]∑(n=0…∞){[(2b/a)2n/(2n)!]∫(0,∞)e-yyn-1/2dy}
=[1/(2a)]∑(n=0…∞){[(2b/a)2n/(2n)!]Γ(n+1/2)}
=[(√π)/(2a)]∑(n=0…∞){[(2b/a)2n/(2n)!][(2n-1)!!/2n]}
=[(√π)/(2a)]∑(n=0…∞)[(b/a)2n/n!]
=[(√π)/(2a)]e(b/a)^2
五、复变留数法:(略)