有关定轴转动惯量与惯性积的定理公式
(2015-07-30 08:54:44)
标签:
转动惯量惯性积半轴斜轴物体 |
分类: 力学、热学 |
一、转动惯量的平移定理:
其中,m为物体质量,I0为通过物体质心的某定轴转动惯量,I为与I0转轴平行且相距d的定轴转动惯量。
二、惯性积的平移定理:
其中,Jxy、Jxz、Jyz为空间直角坐标系原点在物体质心的三个惯性积,J'xy、J'xz、J'yz为将坐标系原点从质心平移到(x1,y1,z1)的三个惯性积。
三、转动惯量的不等式:
其中,Ix、Iy、Iz分别是物体以三个坐标轴为转轴的转动惯量。对非线段物体,只有一个等号有可能成立。
四、惯性积的取值范围:
1、三个惯性积的一次不等式:
2、当三个惯性积“三非正”或“一非正二非负”时,还有以下条件:
3、三个惯性积的二次不等式:
五、斜轴转动惯量公式:
I=Ixcos2α+Iycos2β+Izcos2γ-2Jxycosαcosβ-2Jxzcosαcosγ-2Jyzcosβcosγ
其中,I为通过坐标系原点的斜轴转动惯量,cosα、cosβ、cosγ分别为斜轴在x、y、z轴上的方向余弦。
六、惯性主轴位置方程(回转曲率方程):
其惯性椭球面的对称轴即为物体关于椭球中心(坐标系原点)的惯性主轴。
七、令a=Ix、b=Iy、c=Iz、f=Jyz、g=Jxz、h=Jxy,
则三次方程x3-Ax2+Bx-C=0存在三个正根的充要条件:
①A>0、B>0、C>0,②(AB-9C)2≤4(A2-3B)(B2-3AC)
设三正根为:x3≥x2≥x1>0,
则惯性椭球面的三个半轴为:
长半轴:√(m/x1)
中半轴:√(m/x2)
短半轴:√(m/x3)