加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

杨辉三角及排列组合问题

(2009-08-24 17:34:23)
标签:

it

分类: 算法

在屏幕上显示杨辉三角形

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
......................................

*问题分析与算法设计
杨辉三角形中的数,正是(x+y)的N次方幂展开式各项的系数。本题作为程序设计中具有代表性的题目,求解的方法很多,这里仅给出一种。
从杨辉三角形的特点出发,可以总结出:
1)第N行有N+1个值(设起始行为第0行)
2)对于第N行的第J个值:(N>=2)
当J=1或J=N+1时:其值为1
J!=1且J!=N+1时:其值为第N-1行的第J-1个值与第N-1行第J个值
之和
将这些特点提炼成数学公式可表示为:
1 x=1或x=N+1
c(x,y)=
c(x-1,y-1)+c(x-1,y) 其它

本程序应是根据以上递归的数学表达式编制的。
*程序说明与注释
#include<stdio.h>
int main()
{
int i,j,n=13;
printf("N=");
while(n>12)
scanf("%d",&n);
for(i=0;i<=n;i++)
{
for(j-0;j<24-2*i;j++) printf(" ");
for(j=1;j<i+2;j++) printf("%4d",c(i,j));
printf("\n");
}
}

void int c(int x,int y)
{
int z;
if((y==1)||(y==x+1)) return 1;
z=c(x-1,y-1)+c(x-1,y);
return z;
}

 

小明有五本新书,要借给A,B,C三位小朋友,若每人每次只能借一本,则可以有多少种不同的借法?

*问题分析与算法设计
本问题实际上是一个排列问题,即求从5个中取3个进行排列的方法的总数。首先对五本书从1至5进行编号,然后使用穷举的方法。假设三个人分别借这五本书中的一本,当三个人所借的书的编号都不相同时,就是满足题意的一种借阅方法。
*程序说明与注释
int main()
{
int a,b,c,count=0;
printf("There are diffrent methods for XM to distribute books to 3 readers:\n");
for(a=1;a<=5;a++)
for(b=1;b<=5;b++)
for(c=1;a!=b&&c<=5;c++)
if(c!=a&&c!=b)
printf(count%8?"%2d:%d,%d,%d ":"%2d:%d,%d,%d\n ",++count,a,b,c);

}

*运行结果
There are diffrent methods for XM to distribute books to 3 readers:
1: 1,2,3 2: 1,2,4 3: 1,2,5 4: 1,3,2 5: 1,3,4
6: 1,3,5 7: 1,4,2 8: 1,4,3 9: 1,4,5 10:1,5,2
11:1,5,3 12:1,5,4 13:2,1,3 14:2,1,4 15:2,1,5
16:2,3,1 17:2,3,4 18:2,3,5 19:2,4,1 20:2,4,3
21:2,4,5 22:2,5,1 23:2,5,3 24:2,5,4 25:3,1,2
26:3,1,4 27:3,1,5 28:3,2,1 29:3,2,4 30:3,2,5
31:3,4,1 32:3,4,2 33:3,4,5 34:3,5,1 35:3,5,2
36:3,5,4 37:4,1,2 38:4,1,3 39:4,1,5 40:4,2,1
41:4,2,3 42:4,2,5 43:4,3,1 44:4,3,2 45:4,3,5
46:4,5,1 47:4,5,2 48:4,5,3 49:5,1,2 50:5,1,3
51:5,1,4 52:5,2,1 53:5,2,3 54:5,2,4 55:5,3,1
56:5,3,2 57:5,3,4 58:5,4,1 59:5,4,2 60:5,4,3

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有