苏教版小学数学四年级下册《倍数和因数》教学设计
(2013-05-29 22:39:49)
标签:
教育 |
分类: 数学教案 |
倍数和因数
教学内容:苏教版小学数学四年级下册《倍数和因数》
教学目标:
3.使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
教学重点:理解倍数和因数的意义,探索求一个数的倍数和因数的方法。
教学难点:发现一个数的倍数和因数的特征,探求并掌握求一个数的所有因数的方法。
教学准备:每桌准备12个一样大小的正方形。
教学过程:
一、师生互动,引入新课
师:同学们,今天这节课,我们一起学习《倍数和因数》(板书课题)。
生:什么是倍数和因数?
(师相应标记板书)
师:接下来我们就围绕同学们提出的问题一起探究发现。
二、操作感悟,形成概念
1.操作感知,初步理解概念
(1)师:请看大屏幕,用12个同样大小的正方形拼成一个长方形。想一想,每排摆几个,摆了几排?有几种不同的摆法?请同学们动手摆一摆,并用乘法算式把自己的摆法表示出来,完成作业纸上的活动一。
(2)学生操作并用乘法算式记录摆法。
(3)资源收集并交流。
(4)初步感知概念。
师:咱们先看4×3=12这道算式,你知道什么是倍数,什么是因数吗?(稍停顿)别急,书上已经为大家解释得非常清楚。请同学打开课本,仔细学习70页下方倒数第三、四行的一句话。
学生自己阅读课本。
师:你看明白了吗?请大家合上课本,谁能够看着大屏幕说说看?
请一学生说,同时课件出示:4×3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
师:你真会学习。现在,大家知道什么是倍数和因数了吗?
2.问题推进,进一步理解概念。
师:谁先来试试?
师追问:能不能这样说:6和2是因数,12是倍数?
强调:我们一定要说清楚,谁是谁的倍数,谁是谁的因数。
师:12是12的倍数,12是12的因数,这里说到的4个12,到底指乘法算式里的哪一个12呢?谁来边指边说?
师:看来一个数本身——既是自己的倍数,也是自己的因数。
③21÷7=3
师:你是怎么看出来的呀?
生:可以想到乘法算式7×3=21
师:乘法和除法可以相互转化,原来我们不仅能在乘法算式中找到一个数的倍数和因数,也能在除法算式中找到一个数的倍数和因数。
④3+4=7
师:这道算式表示的是加法关系,不存在我们所说的倍数因数关系。
三、探索方法,发现特征
1.探索求一个数因数的方法。
(1)师:刚才在一些乘法算式或除法算式中,我们知道了什么是因数,什么是倍数。想一想,如果老师请你找出18的因数,该怎么办?请你试着找一找,完成作业纸上活动二的第1题。(板书:找一找)
(2)交流:请看大屏幕,老师这里有几位同学的作业,仔细观察,18的因数都找全了吗?
(3)师:请你试着用这样的方法也来找找15、16的因数。完成作业纸上活动二的第2题。(板书:试一试)
学生独立找15、16的因数。
师:谁来说说看你是怎么找的,找到了哪些?
学生回答。
2.发现一个数因数的特征。
(1)师:请大家观察一下这几个数的因数,你有什么发现?
(2)方法指导。
(3)学生扩大范围举例验证。
(4)交流验证情况,尤其关注有没有反例。
(5)归纳得出结论。
生小结:一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。
3.方法回顾。
师:刚才我们经历了“找一找”“试一试”“想一想”这几个过程对因数进行了研究,想一想接下来我们会研究什么?
4.迁移方法,研究倍数。
(1)师:接下来我们就按这样的方法来研究倍数。请同学们试着找一找3、2、5的倍数,完成作业纸上活动三。
(2)学生独立完成。
(3)师:有的同学写得又对又快,还有序,有什么好方法吗?
(4)组织交流:
师:与因数的特征比一比,一个数的倍数又有怎样的特点呢?
小结:我们发现了:一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。同学们如果有兴趣,课后可以举一些其他范围的自然数去验证一下。
师:大家很了不起,根据研究因数的内容和过程,自己尝试着研究了倍数,这是大家爱动脑、不断思考的结果。
四、巩固练习,完善新知
1.“想想做做”的第l题。
学生表述后强调哪个是哪个的倍数(或因数)。
2.“想想做做”的第2题。
3.“想想做做”的第3题。
4.游戏
“找朋友”:让学生在作业纸反面写上自己的学号,找出自己学号数的所有因数,使学生发现每个学号数的因数都在全班的学号数以内;再让学生找一找自己学号数的倍数,并说一说能不能在全班学号数内部找到一个,还有其他的吗?
五、全课总结,拓展延伸
师:通过今天这节课的学习,你有什么收获?现在你能回答课开始提出的问题了吗?相互说一说。
学生交流反馈。
师:一个个数看上去非常枯燥,可是如果对它进行深入地研究,又会发现它们就像人与人之间一样,有着不可割裂的联系,相互依存,隐藏着无穷的乐趣。希望同学们在以后的学习中,也能像今天这样积极动脑,主动探索,在数学学习中增长智慧,享受快乐!