Mike11 ---12---(NAM)降雨径流模型参数及率定
(2009-03-17 22:24:52)
标签:
杂谈 |
模型参数及率定:
目标
-
-
-
-
最初调整:
-
-
-
进一步的参数调整(重复进行):
-
-
-
需3-5年长序列的水文、气象观测资料用于NAM率定
参数 |
描述 |
影响 |
取值范围 |
Umax |
地表储水层最大含水量 |
坡面流、入渗、蒸散发和壤中流。 控制总水量平衡 |
10-25 mm |
Lmax |
土壤层/根区最大含水量,是一个平均量。 |
坡面流、入渗、蒸散发和基流。 控制总水量平衡 |
50-250mm, Umax ≈ 0.1Lmax |
CQOF |
径流系数 |
坡面流量和入渗量 |
0- 1 |
CK12 |
坡面流和壤中流时间常数 |
坡面流和壤中流演算。控制地表径流形状 |
3-48 hr |
CKBF |
基流时间常数 |
地下水补给演算。 控制基流形状 |
500-5000 hr |
CKIF |
壤中流排水常数 |
控制壤中流产生的大小和相位 |
500 -1000 hr |
TOF |
坡面流临界值 |
汛期开始时延迟地表径流的形成 |
0-1 |
TIF |
壤中流临界值 |
汛期开始时延迟壤中流的形成 |
0-1 |
TG |
地下水补给临界值 |
汛期开始时延迟地下水补充的发生 |
0-1 |
初始条件
-
-
-
考虑初始条件估测的可能出现的误差情况,建议忽略模拟期前3-6个月的结果。
率定时,请参考以下:
A calibration usually commences by adjusting the water balance in the
system. The total evapotranspiration over a certain period should correspond
to the accumulated net precipitation minus runoff. The evapotranspiration
will increase when increasing the maximum water contents in
the surface storage Umax and the root zone storage Lmax, and vice versa.
The peak runoff events are caused by large quantities of overland flow.
The peak volume can be adjusted by changing the overland flow runoff
coefficient (CQOF), whereas the shape of the peak depends on the time
constant used in the runoff routing (CK12).
The amount of base flow is affected by the other runoff components; a
decrease in overland flow or interflow will result in a higher baseflow, and
vice versa. The shape of the baseflow recession is a function of the baseflow
time constant (CKBF). If the baseflow recession changes to a slower
recession after a certain time, a lower groundwater reservoir should be
added, including calibration of CQlow and CKlow.
Initially, the root zone threshold values TOF, TIF and TG can be set to
zero. After a first round of calibration of the parameters Umax, Lmax,
CQOF, CK12 and CKBF, the threshold parameters can be adjusted for further
refinement of the simulation results.
For individual calibration of the groundwater parameters GWLBF0 and SY,
the simulated groundwater level is compared to observed groundwater
levels. Inclusion of the shallow groundwater reservoir description is
important in lowland areas, as found e.g. in swamps or river delta areas,
where the groundwater table may reach the ground surface during the wet
season.
NAM模型参考文献:
/41/ Abbott, M.B. and J.C. Refsgaard (eds) (1996), Distributed Hydrological
Modelling, Kluwer Academic Press, The Netherlands, 321
p.
/42/ Brakensiek, D.L. (1979), Comments on 'Empirical Equations for
some soil Hydraulic Properties' by Roger B. Clapp and George M.
Hornberger, Water Resources Research, 15 (4), 989-990.
/43/ Brakensiek, D.L., Engleman, R.L. and Rawls, W.J. (1981), Variation
within texture classes of soil water parameters, Trans. ASAE,
24, 335-339.
/44/ Cosby, B.J., Hornberger, G.M., Clapp, R.B. and Ginn, T.R. (1984),
A statistical exploration of the relationships of soil moisture characteristics
to the physical properties of soils, Water Resources
Research, 20 (6), 682-690.
/45/ Doorenbos, J. and W.O. Pruitt (1977), Guidelines for Predicting
Crop Water Requirements. FAO Irrigation and Drainage paper No.
24. Food and Agricultural Organization of the United Nations.
/46/ Duan, Q., Sorooshian, S., Gupta, V. (1992), Effective and efficient
global optimization for conceptual rainfall-runoff models, Water
Resources Research, 28(4), 1015-1031.
/47/ Li, R.-M., Stevens, M.A. and Simons, D.B. (1976), Solutions to
Green-Ampt infiltration equations, J. Irrig. and Drain. Div., Amer.
Soc. Civil. Eng., 102 (IR2), 239-248.