加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

一位数除两位数“笔算除法”

(2013-03-10 22:57:45)
标签:

教育

分类: 追梦的舞台(课堂教学)

 “一位数除两位数”笔算除法

 

试教前

【不同教材】

苏教版:准备题“把6根小棒和6捆小棒平均分成3份,并列出算式。通过类推,从实际中体会被除数十位上的商是几个十。”

北师大版:用拆数法口算42÷265÷3

人教版:例1:是一位数除两位数,被除数的各个数位上的数都能被整除,主要解决除的顺序和竖式写法的问题。

2:也是一位数除两位数,但除到被除数十位上有余数。

【教材地位】

本课时是在口算除法(用口诀求商)和除法竖式(商是一位数)的基础上进行教学的。它为学生掌握一位数除多位数、学习除数是多位数的除法奠定了知识和思维基础。

【教学目标】

1、使学生探索笔算的合理程序,经历一位数除两位数的笔算过程,理解一位数除两位数笔算除法的算理、基本的运算思路(顺序)和竖式写法,初步形成两位数除以一位数的基本笔算方法,

2、使学生感受数学与生活的联系,能够运用所学知识解决日常生活中的简单问题。

【教学重点】

一位数除两位数的笔算方法(先用一位数去除十位上的数,然后将余数和个位上的数合并,再用除数去除)。

【教学难点】

一位数除两位数的笔算算理(为什么要先除十位上的数?)

 

一次试教后

经过一次试教后,我意识到除法竖式对于学生来说是一个很难的问题。究其原因,学生不是不懂除法计算,而是不懂除法竖式的含义和写法。由此可见,让学生领悟除法竖式的实质是非常重要的。

(一)   数学的理论和方法,经历了数千年的发展与抽象概括,往往高于小学生的生活实践和经验。因此,要让学生短时间内接受是比较困难的。从古代除法到现代“除法竖式”,也是经过很长时间的发展、演变、简化的。初学的学生写出的各种“有趣”形式其实是人们研究某一过程的再现,所以应在不批判的基础上再引导简化。

(二)   除法竖式的本质:除法是小学数学中比较复杂的计算,人们常常将它按一定顺序分解为一些简单的计算。人们在进行笔算除法的时候,总希望把按一定顺序计算的中间结果和最终结果记录下来,除法竖式就是一种简洁而有效地记录方式。

(三)   它表现为程序性的运算形式,如果不理解其实质,仅靠死记硬背和机械运算,就容易出现差错。因此,竖式教学,要让学生经历从实物操作到数学计算的过程,弄清“要分层书写”、“除到哪一位商到哪一位”等形式中隐含的道理,并在此基础上领悟除法竖式的数学本质。

【教材重组上的几点思考】:

思考一:要不要情境?如果要,那该要什么样的情境?

虽然学生在三上初步接触过除法竖式,但是那时的竖式意义还很不明显,或者说竖式的本质没有充分体现出来。因此,本课时相当于竖式学习的“起始课、准备课”,这就要求教师务必要在学生正式学习竖式之前先提供小棒材料,建立大量的活动经验,使得竖式最后水到渠成。基于这样的考虑,我个人认为不能为了情境而情境,不能让生活味冲淡数学味。再者,分小棒的过程本身也就是一个半生活的数学情境。所以本课作为正式学习竖式的第一课时,可以把课本上的植树情境放到练习中。

思考二:如何将本课时内容与学生已掌握的除法口算的经验进行沟通联系,达到正迁移?

引导学生利用“4个十÷2=2个十”的旧知来学习“42÷2”的新知。这个口算的过程与直观操作的过程是一致的,只是脱离了直观,应用已有的口算经验来解决。在除十位上的数时,教师可以遮住个位上的数,而在除个位上的数时,教师可以遮住十位上的数,这样就将除法竖式按顺序分解为“4÷2”和“2÷2”这样的简单计算,便于学生掌握算法。因此,在板书第一个4(商2和除数2的乘积)时,可以不写0,在最后说明算理时进行适当补充即可。

思考三:怎么处理例1与例2的关系?

在处理42÷2时,应该允许学生出现“(1)先分整捆再分单根;(2)先分单根再分整捆;(3)把整捆拆开与单根合并后,再平均分”这样三种情况,但是到了例2,必须逐渐引导学生先分整捆的,这是为了“从高位除起”而服务的。42÷352÷2的最大不同在于不方便从单根的小棒开始分,这更有利于学生理解为什么“从高位开始除”,所以我把例2换成了42÷3

 

【设计理念】

1、按学生的认知规律,充分利用学生已掌握的除法口算的经验设计教学。课始,引导学生利用40÷22÷2的旧知来学习42÷2的新知,同时让学生感悟到笔算与口算之间的联系。

2、结合一定的直观操作活动,让学生在经历平均分小棒的活动,并将分的过程与笔算过程相结合的过程中,帮助理解笔算除法的算理,探索用竖式计算的合理程序。

3、使学生养成一种有序地思考和操作的习惯,学会“先做什么——再做什么——接着做什么——最后做什么”的有序思考方法,从而自主概括出笔算除法的计算规律,同时学会竖式的简便写法。

4、引导学生用简洁的语言表述思考过程,实际上是引导学生进行归纳、整理运算程序和运算规律的过程,是计算活动过程的提炼和升华。

 

【教学过程】

一、运用知识迁移,唤醒活动经验。

1、  提出问题。师:(出示小棒图)有几根小棒?(生:12根)要把这12根小棒平均分成2份,每份几根?

2、  用算式怎么表示?板书:12÷2=6(根)

3、  课件演示:是不是这样?

一共分掉了几根?分完了没有?一次就把12根小棒分完了。

4、  复习竖式。

(1)       提问:如果要用竖式来体现刚才分的过程,该怎么写?

(2)       指名板演,并请生介绍每一个数分别表示什么意思。

(3)       直观演示,师归纳:12根小棒,平均分成2份,每份6根,把商6写在个位上,一共分掉了——12根。可以用哪一句口诀?分完了吗?

过渡:和你想的一样吗?

 

二、探究新知。

(一)42÷2

1、提出问题。

出示小棒图,师:把42根小棒平均分成2份,每份几根?(等待4秒)

2、算式怎么写(预设生:42÷2=21根)板书:42÷2

3、分小棒活动。

【意图:经历从实物操作到算式表达的过程,把除法这种比较复杂的运算,分解为一些按顺序计算的简单计算,沟通除法算式从直观到抽象的联系,并为下一阶段的学习打下基础。】

过渡:你是怎么分的?能不能把你分的过程摆出来给老师看一下?

(1)       同桌分一分,分完后想一想先分什么再分什么。

(2)       汇报,并口述分棒过程。

(预设:A先分整捆再分单根,B先分单根再分整捆,C先拆捆,后单根分,再凑捆。

师引导全班学生作出比较,肯定AB比较简便、合理,C也能得出结果,但有点麻烦。)

3)课件再现A方法,并列式。

师:请大家把小棒放回上课前的样子。

师:刚才AB都是把4捆小棒平均分成2份,每份2捆。这一步能用什么算式表示?

   生“4除以2等于2”。板书“4”,师:“4表示——4捆,也就是4个十,4个十除以2等于2捆,也就是2个十”。形成板书:4个十÷2=2个十。)

师:一共分了多少?分完了吗?

师:第二步,再把2根小棒平均分成2份,每份1根。能用什么算式表示?

(师:2根也就是2个一,除以2等于1个一。板书:2个一÷2=1个一)

师:分完了吗?结果每份得到2个十加1等于21根。板书201=21

4)同桌互说。师:你能不能也像老师这样说一说,第一步怎么分,第二步怎么分,结果每份得到多少。悄悄地和同桌说一说吧。

4、探索竖式。

过渡:刚才我们用横式来表示分小棒的过程和结果,如果要把分小棒的过程体现在竖式上,该怎么写呢?

(1)       尝试写竖式。

(2)       师巡视,指名扮演,并请解释每一个数的含义。(生随意说)

预设,生1:单层竖式;生2:分步(两道独立)竖式;生3:两层竖式。

(3)       师评价优化。

A.肯定。师:这三种可看作计算除法的三种方法,他们都表示出了分的结果是每份21根。

B. 排除1。师:但是这三种看起来又不一样。你觉得哪一种更能详细地记录分的步骤?

得出:第2和第3种都能反映刚才分小棒的两个步骤,第1种虽然简单,但体现不出分的步骤,特别是在被除数比较大,不能用口诀的时候很难直接看出结果。

C. 排除223都体现了刚才分小棒的两个步骤和结果,哪一种更简洁?

得出:2用了两个竖式,比较浪费,还是一个竖式对应一个问题好。3把除法这种比较复杂的运算,分解为一步一步按顺序的简单计算,并适当地记录了每一个步骤的过程和结果,既详细又简洁。

D.以后我们就用这样的竖式来计算一些比较复杂的除法。

5、 分析算理,并用谈话方式讲述计算顺序、格式。

1)师:刚才分小棒的时候,我们先分的是?(闪烁整捆小棒)所以笔算时要先从被除数的哪一位算起?每份分得2捆小棒(课件演示),所以4个十除以2商得几个十?2个十的2要写在被除数的哪一位上?(板书商2)一份2个十,两份一共分掉了几个十?(虚线轮廓闪烁)我们用商2个十乘2等于4个十来表示已经分了40根。整捆的分完了吗?4个十减4个十得0。这个0可以省略不写。第二步再分剩下来的2根小棒,为了区分第二步和第一步,把2移到横线下面继续除。每份分到几根小棒?(演示)所以2除以21,商写在被除数的哪一位上面?用商1乘除数2等于2,表示已经分了2根小棒。分完了吗?所以22等于0,我们就在横线下面写上0。结果是21根。

2)提问:商21的十位上2表示什么?个位上1表示什么?随学生的回答连线横式。

6、 归纳算法。

(1)       现在我们不看图,想一想42÷2该怎么笔算?

引导学生思考:先从被除数的哪一位除起?40除以2商多少?写在被除数的哪一位上面?接着再算什么?被除数十位上的数分完了怎么办?个位上的2除以2商写在哪里?最后还要算什么?(得出:两位数除以一位数,要先除十位上的数,除到哪一位,就把商写在哪一位的上面,剩下来的数要抄到竖式的下面一层继续除。)

2)拿起笔写一写竖式。

(二)42÷3

1、提出问题:42根小棒,平均分成3份,每份几根?

2、列出算式:42÷3

3、活动经验。

1)先静静地想一想,小棒怎么分?再与同桌交流。

2)汇报。

3)课件演示。

师强调1捆怎么办”:余下1捆能平均分成3份吗?(不能)一捆也就是1个十不能平均分成3份,怎么办呢?我们就把它和剩下2根合并在一起,然后把这1个十拆开变成十个一,加上旁边单根2个一就是12,继续分……

4、探索竖式。

师:通过刚才分小棒的过程,想一想42÷3该怎么笔算?

板演。教师注意巡回指导。

请生介绍含义。(随意说)

师课件演示,并适时板书竖式。

师提问:第一次除后,横线下的12是哪里来的?(1变红色)

(三)对比,内化算理和算法。

1)比较42÷242÷3的竖式,有什么相同和不同?

得出相同点:A.都是两位数除以一位数,商是两位数的除法。B.都从十位算起。C.都是分两步计算。

不同点:第一个竖式十位上的数正好分完,第二个竖式十位上的数没有分完,还有余数。

追问:当余下1个十怎么办?要把余下的数和个位上的数合起来继续除。

2)揭题:这就是我们今天要学的两位数除以一位数的笔算除法。板书“笔算除法”。

3)比较上两道竖式和12÷2的竖式,最大的不同是什么?

得出:12÷2可以用我们学过的表内口诀直接算出得数,竖式只有一层。另两道不能直接用口诀,竖式要分两步骤。

 

三、巩固练习。

1、列竖式计算63÷3   52÷2  42÷7

2、解决问题。

四、总结:今天你学到了什么新的知识?

 

 

 

板书设计:

                             笔算除法

12÷2=6(根)                 42÷2=21(根)                 42÷3=14(根)

                             4个十÷2=2个十  2个一÷2=1个一  201=21    

 

 

 

           

0

阅读 收藏 喜欢 打印举报/Report
前一篇:复习要点
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有