Java相似图片搜索算法之"感知哈希算法"实例
(2013-08-21 10:47:47)
标签:
图片搜索算法实例感知哈希算法相似图片搜索 |
分类: 搜索引擎 |
Java 相似图片搜索算法之感知哈希算法实例:
public static final int SAMEVALUE = 5;
//相同图片阀值
public static final int SIMILARVALUE = 10;
//相似图片阀值
public static void main(String[] args)
{
List hashCodes = new
ArrayList();
String searchImgUrl =
"C:\\Users\\admin\\Desktop\\image\\example.jpg";
List urlList =
collectionImgUrl();
String hashCode =
null;
long startMillis =
System.currentTimeMillis();
for (String url :
urlList) {
hashCode = produceFingerPrint(url);
hashCodes.add(hashCode);
}
System.out.println("Resources: ");
System.out.println(hashCodes);
System.out.println();
String sourceHashCode =
produceFingerPrint(searchImgUrl);
System.out.println("Source: ");
System.out.println(sourceHashCode);
System.out.println();
List resultList = new
ArrayList();
List similarResultList =
new ArrayList();
List differences = new
ArrayList();
for (int i = 0; i
< hashCodes.size(); i++) {
int
difference = hammingDistance(sourceHashCode,
hashCodes.get(i));
if(difference <= SAMEVALUE){
resultList.add(urlList.get(i).substring(urlList.get(i).lastIndexOf("\")+1,urlList.get(i).length()));
}else
if(difference <= SIMILARVALUE){
similarResultList.add(urlList.get(i).substring(urlList.get(i).lastIndexOf("\")+1,urlList.get(i).length()));
}
differences.add(difference+"->"+urlList.get(i).substring(urlList.get(i).lastIndexOf("\")+1,urlList.get(i).length()));
}
System.out.println("curMillis:"+(System.currentTimeMillis()-startMillis));
System.out.println("搜索图片:"+searchImgUrl.substring(searchImgUrl.lastIndexOf("\")+1,searchImgUrl.length()));
System.out.println("相同图片:"+resultList);
System.out.println("相似图片:"+similarResultList);
System.out.println("图片对比:"+differences);
}
public static List
collectionImgUrl(){
String imgPath =
"C:\\Users\\admin\\Desktop\\image";
List list = new
ArrayList();
File file = new
File(imgPath);
if(file.isDirectory()){
String[] fileNames = file.list();
for(String name : fileNames){
list.add(imgPath.concat("\")+name);
}
}
return list;
}
public static int hammingDistance(String
sourceHashCode, String hashCode) {
int difference =
0;
int len =
sourceHashCode.length();
for (int i = 0; i
< len; i++) {
if
(sourceHashCode.charAt(i) != hashCode.charAt(i)) {
difference++;
}
}
return difference;
}
public static String
produceFingerPrint(String filename) {
BufferedImage source =
ImageHelper.readPNGImage(filename);// 读取文件
int width = 8;
int height = 8;
// 第一步,缩小尺寸。
//
将图片缩小到8x8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。
BufferedImage thumb =
ImageHelper.thumb(source, width, height, false);
// 第二步,简化色彩。
//
将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。
int[] pixels = new
int[width * height];
for (int i = 0; i
< width; i++) {
for
(int j = 0; j < height; j++) {
pixels[i * height + j] =
ImageHelper.rgbToGray(thumb.getRGB(i, j));
}
}
// 第三步,计算平均值。
//
计算所有64个像素的灰度平均值。
int avgPixel =
ImageHelper.average(pixels);
// 第四步,比较像素的灰度。
//
将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值,记为0。
int[] comps = new
int[width * height];
for (int i = 0; i
< comps.length; i++) {
if
(pixels[i] >= avgPixel) {
comps[i] = 1;
}
else {
comps[i] = 0;
}
}
// 第五步,计算哈希值。
//
将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。
StringBuffer hashCode =
new StringBuffer();
for (int i = 0; i
< comps.length; i += 4) {
int
result = comps[i] * (int) Math.pow(2, 3) + comps[i + 1]
* (int) Math.pow(2, 2) +
comps[i + 2] * (int) Math.pow(2, 1)
+ comps[i + 2];
hashCode.append(binaryToHex(result));
}
//
得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。
return
hashCode.toString();
}
private static char binaryToHex(int binary)
{
char ch = ' ';
switch (binary) {
case 0:
ch =
'0';
break;
case 1:
ch =
'1';
break;
case 2:
ch =
'2';
break;
case 3:
ch =
'3';
break;
case 4:
ch =
'4';
break;
case 5:
ch =
'5';
break;
case 6:
ch =
'6';
break;
case 7:
ch =
'7';
break;
case 8:
ch =
'8';
break;
case 9:
ch =
'9';
break;
case 10:
ch =
'a';
break;
case 11:
ch =
'b';
break;
case 12:
ch =
'c';
break;
case 13:
ch =
'd';
break;
case 14:
ch =
'e';
break;
case 15:
ch =
'f';
break;
default:
ch =
' ';
}
return ch;
}
// 项目根目录路径
public static final String path =
System.getProperty("user.dir");
public static BufferedImage
thumb(BufferedImage source, int width,
int
height, boolean b) {
//
targetW,targetH分别表示目标长和宽
int type =
source.getType();
BufferedImage target =
null;
double sx = (double)
width / source.getWidth();
double sy = (double)
height / source.getHeight();
if (b) {
if
(sx > sy) {
sx = sy;
width = (int) (sx * source.getWidth());
}
else {
sy = sx;
height = (int) (sy * source.getHeight());
}
}
if (type ==
BufferedImage.TYPE_CUSTOM) { // handmade
ColorModel cm = source.getColorModel();
WritableRaster raster = cm.createCompatibleWritableRaster(width,
height);
boolean alphaPremultiplied = cm.isAlphaPremultiplied();
target = new BufferedImage(cm, raster, alphaPremultiplied,
null);
} else
target = new BufferedImage(width, height, type);
Graphics2D g =
target.createGraphics();
// smoother than
exlax:
g.setRenderingHint(RenderingHints.KEY_RENDERING,
RenderingHints.VALUE_RENDER_QUALITY);
g.drawRenderedImage(source, AffineTransform.getScaleInstance(sx,
sy));
g.dispose();
return target;
}
public static void waterMark(String
imgPath, String markPath, int x, int y,
float
alpha) {
try {
//
加载待处理图片文件
Image
img = ImageIO.read(new File(imgPath));
BufferedImage image = new BufferedImage(img.getWidth(null),
img.getHeight(null),
BufferedImage.TYPE_INT_RGB);
Graphics2D g = image.createGraphics();
g.drawImage(img, 0, 0, null);
//
加载水印图片文件
Image
src_biao = ImageIO.read(new File(markPath));
g.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_ATOP,
alpha));
g.drawImage(src_biao, x, y, null);
g.dispose();
//
保存处理后的文件
FileOutputStream out = new FileOutputStream(imgPath);
JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(out);
encoder.encode(image);
out.close();
} catch (Exception e)
{
e.printStackTrace();
}
}
public static void textMark(String imgPath,
String text, Font font,
Color
color, int x, int y, float alpha) {
try {
Font
Dfont = (font == null) ? new Font("宋体", 20, 13) : font;
Image
img = ImageIO.read(new File(imgPath));
BufferedImage image = new BufferedImage(img.getWidth(null),
img.getHeight(null),
BufferedImage.TYPE_INT_RGB);
Graphics2D g = image.createGraphics();
g.drawImage(img, 0, 0, null);
g.setColor(color);
g.setFont(Dfont);
g.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_ATOP,
alpha));
g.drawString(text, x, y);
g.dispose();
FileOutputStream out = new FileOutputStream(imgPath);
JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(out);
encoder.encode(image);
out.close();
} catch (Exception e)
{
System.out.println(e);
}
}
public static BufferedImage
readJPEGImage(String filename) {
try {
InputStream imageIn = new FileInputStream(new
File(filename));
//
得到输入的编码器,将文件流进行jpg格式编码
JPEGImageDecoder decoder =
JPEGCodec.createJPEGDecoder(imageIn);
//
得到编码后的图片对象
BufferedImage sourceImage = decoder.decodeAsBufferedImage();
return sourceImage;
} catch
(FileNotFoundException e) {
e.printStackTrace();
} catch
(ImageFormatException e) {
e.printStackTrace();
} catch (IOException e)
{
e.printStackTrace();
}
return null;
}
public static BufferedImage
readPNGImage(String filename) {
try {
File
inputFile = new File(filename);
BufferedImage sourceImage = ImageIO.read(inputFile);
return sourceImage;
} catch
(FileNotFoundException e) {
e.printStackTrace();
} catch
(ImageFormatException e) {
e.printStackTrace();
} catch (IOException e)
{
e.printStackTrace();
}
return null;
}
public static int rgbToGray(int pixels)
{
// int _alpha = (pixels
>> 24) & 0xFF;
int _red = (pixels
>> 16) & 0xFF;
int _green = (pixels
>> 8) & 0xFF;
int _blue = (pixels)
& 0xFF;
return (int) (0.3 * _red
+ 0.59 * _green + 0.11 * _blue);
}
public static int average(int[] pixels)
{
float m = 0;
for (int i = 0; i
< pixels.length; ++i) {
m +=
pixels[i];
}
m = m /
pixels.length;
return (int) m;
}
import java.awt.image.BufferedImage;
import java.io.File;
import java.util.ArrayList;
import java.util.List;
public class SimilarImageSearch {
}
import java.awt.AlphaComposite;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics2D;
import java.awt.Image;
import java.awt.RenderingHints;
import java.awt.geom.AffineTransform;
import java.awt.image.BufferedImage;
import java.awt.image.ColorModel;
import java.awt.image.WritableRaster;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import javax.imageio.ImageIO;
import com.sun.image.codec.jpeg.ImageFormatException;
import com.sun.image.codec.jpeg.JPEGCodec;
import com.sun.image.codec.jpeg.JPEGImageDecoder;
import com.sun.image.codec.jpeg.JPEGImageEncoder;
public class ImageHelper {
}
前一篇:相似图片搜索算法之感知哈希算法

加载中…