ip首部数据结构和ip数据报

标签:
杂谈 |
分类: linux内核之网络 |
IP数据报直观图
http://s10/middle/5ceeb9eagb893853a3f49&690
IP数据报首部
http://s5/middle/5ceeb9eagb89385ac1634&690
IP数据报首部内核定义
Linux 2.6.32.27里的include/Linux/ip.h里定义的
struct iphdr {
#if defined(__LITTLE_ENDIAN_BITFIELD)
#elif defined (__BIG_ENDIAN_BITFIELD)
#else
#error
#endive
};
IP数据报首部解释
(1)版本(Iphdr->version) 占4位,指IP协议的版本。通信双方使用的IP协议版本必须一致。目前广泛使用的IP协议版本号为4(即IPv4)。关于IPv6,目前还处于草案阶段。
(2)首部长度(Iphdr->ihl) 占4位,可表示的最大十进制数值是15。请注意,这个字段所表示数的单位是32位字长(1个32位字长是4字节),因此,当IP的首部长度为1111时(即十进制的15),首部长度就达到60字节。当IP分组的首部长度不是4字节的整数倍时,必须利用最后的填充字段加以填充。因此数据部分永远在4字节的整数倍开始,这样在实现IP协议时较为方便。首部长度限制为60字节的缺点是有时可能不够用。但这样做是希望用户尽量减少开销。最常用的首部长度就是20字节(即首部长度为0101),这时不使用任何选项。
(3)区分服务(Iphdr->tos) 占8位,用来获得更好的服务。这个字段在旧标准中叫做服务类型(
(4)总长度(Iphdr->tot_len) 总长度指首部和数据之和的长度,单位为字节。总长度字段为16位,因此数据报的最大长度为65535字节。在IP层下面的每一种数据链路层都有自己的帧格式,其中包括帧格式中的数据字段的最大长度,这称为最大传送单元MTU(Maximum Transfer Unit)。当一个数据报封装成链路层的帧时,此数据报的总长度(即首部加上数据部分)一定不能超过下面的数据链路层的MTU值。
利用首部长度字段和总长度字段,就可以知道 IP数据报中数据内容的起始位置和长度。由于该字段长16比特,所以IP数据报最长可达65535字.总长度字段是IP首部中必要的内容,因为一些数据链路(如以太网)需要填充一些数据以达到最小长度。尽管以太网的最小帧长为46字节,但是IP数据可能会更短。如果没有总长度字段,那么IP层就不知道46字节中有多少是IP数据报的内容。
(5)标识(Iphdr->id) 占16位。IP软件在存储器中维持一个计数器,每产生一个数据报,计数器就加1,并将此值赋给标识字段。但这个“标识”并不是序号,因为IP是无连接服务,数据报不存在按序接收的问题。当数据报由于长度超过网络的MTU而必须分片时,这个标识字段的值就被复制到所有的数据报的标识字段中。相同的标识字段的值使分片后的各数据报片最后能正确地重装成为原来的数据报。
(6)片偏移(Iphdr->frag_off) 占16位。前3位是标识位,后13位是偏移位。
前三位:
第1位是保留的,必须为0,;
第2位是“更多分片”(MF -- More Fragment)标志。除了最后一片外,其他每个组成数据报的片都要把该比特置1。
第3位是“不分片”(DF -- Don't Fragment)标志,如果将这一比特置1,IP将不对数据报进行分片,这时如果有需要进行分片的数据报到来,会丢弃此数据报并发送一个ICMP差错报文给起始端。
后13位:片偏移位
片偏移指出:较长的分组在分片后,某片在原分组中的相对位置。也就是说,相对用户数据字段的起点,该片从何处开始。片偏移以8个字节为偏移单位。这就是说,每个分片的长度一定是8字节(64位)的整数倍
(7)生存时间(Iphdr->ttl) 占8位,生存时间字段常用的的英文缩写是TTL(Time To Live),表明是数据报在网络中的寿命。由发出数据报的源点设置这个字段。其目的是防止无法交付的数据报无限制地在因特网中兜圈子,因而白白消耗网络资源。最初的设计是以秒作为TTL的单位。每经过一个路由器时,就把TTL减去数据报在路由器消耗掉的一段时间。若数据报在路由器消耗的时间小于1秒,就把TTL值减1。当TTL值为0时,就丢弃这个数据报。
(8)协议(Iphdr-> protocol) 占8位,协议字段指出此数据报携带的数据是使用何种协议,以便使目的主机的IP层知道应将数据部分上交给哪个处理过程。
(9)首部检验和(Iphdr->check) 占16位。这个字段只检验数据报的首部,但不包括数据部分。这是因为数据报每经过一个路由器,路由器都要重新计算一下首部检验和(一些字段,如生存时间、标志、片偏移等都可能发生变化)。不检验数据部分可减少计算的工作量。
为了计算一份数据报的IP检验和,首先把检验和字段置为0。然后,对首部中每个16 bit进行二进制反码求和(整个首部看成是由一串16 bit的字组成),结果存在检验和字段中。当收到一份IP数据报后,同样对首部中每个16 bit进行二进制反码的求和。由于接收方在计算过程中包含了发送方存在首部中的检验和,因此,如果首部在传输过程中没有发生任何差错,那么接收方计算的结果应该为全1。如果结果不是全1(即检验和错误),那么IP就丢弃收到的数据报。但是不生成差错报文,由上层去发现丢失的数据报并进行重传。
(10)源地址(Iphdr->saddr) 占32位(1111 1111=255)。
(11)目的地址(Iphdr->daddr) 占32位。
IP数据报首部的可变部分
IP首部的可变部分就是一个可选字段。选项字段用来支持排错、测量以及安全等措施,内容很丰富。此字段的长度可变,从1个字节到40个字节不等,取决于所选择的项目。某些选项项目只需要1个字节,它只包括1个字节的选项代码。但还有些选项需要多个字节,这些选项一个个拼接起来,中间不需要有分隔符,最后用全0的填充字段补齐成为4字节的整数倍。
增加首部的可变部分是为了增加IP数据报的功能,但这同时也使得IP数据报的首部长度成为可变的。这就增加了每一个路由器处理数据报的开销。实际上这些选项很少被使用。新的IP版本IPv6就将IP数据报的首部长度做成固定的。
目前,这些任选项定义如下:
(1)安全和处理限制(用于军事领域)
(2)记录路径(让每个路由器都记下它的IP地址)
(3)时间戳(让每个路由器都记下它的IP地址和时间)
(4)宽松的源站路由(为数据报指定一系列必须经过的IP地址)
(5)严格的源站路由(与宽松的源站路由类似,但是要求只能经过指定的这些地址,不能经过其他的地址)
这些选项很少被使用,并非所有主机和路由器都支持这些选项。
网络字节序
Htons函数
u_short PASCAL FAR htons( u_short hostshort);
htons的功能:将一个无符号短整型数值转换为网络字节序,即大端模式(big-endian)
参数u_short hostshort: 16位无符号整数
返回值:TCP / IP网络字节顺序.
htons 是把你机器上的整数转换成“网络字节序”, 网络字节序是 big-endian,也就是整数的高位字节存放在内存的低地址处。 而我们常用的 x86 CPU (intel, AMD) 电脑是 little-endian,也就是整数的低位字节放在内存的低字节处。举个例子吧。假定你的port是
0x1234,
在网络字节序里 这个port放到内存中就应该显示成
addr addr+1
0x12 0x34
而在x86电脑上,0x1234放到内存中实际是:
addr addr+1
0x34 0x12
htons 的用处就是把实际内存中的整数存放方式调整成“网络字节序”的方式。
IP数据报的分片与重组
也看了下
http://zhidao.baidu.com/question/8561666.html
http://www.techweb.com.cn/news/2009-10-26/454149.shtml
下面这个说的感觉比较全
#define
IPSKB_FORWARDED
#define IPSKB_XFRM_TUNNEL_SIZE
#define IPSKB_XFRM_TRANSFORMED
#define IPSKB_FRAG_COMPLETE 8
#define
IPSKB_REROUTED
#define
COMPLETE
#define
FIRST_IN
#define
LAST_IN