加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

《分数除以整数》教学设计

(2008-11-03 21:00:21)
标签:

杂谈

分类: 课题信息

《分数除以整数》教学设计

执教人:  朱国华       

授课时间:2008年10月14日

教学内容:小学数学第十一册《分数除以整数》

教学目标:

1、掌握分数除以整数的计算方法。

2、在学习过程中,注重对学生逻辑思维能力的培养,并让学生感受数形结合、转化等数学思想方法在数学中的重要作用。

教学重点:

通过学生的操作、验证,能理解计算算理,并掌握分数除以整数的计算方法。

教学难点:

对分数除以整数的算理理解。

教学过程:

一、铺垫孕伏

              1、口算接龙。

                   3/7×2    7/13×2    2/5×7    4/5×3

              2、设疑

                     4/5÷2

【设计意图:通过设疑,利用学生的思维惯性,制造知识冲突,为学习新知做好铺垫。】

二、探究学习。

        1、学生猜想 4/5÷2的结果,并说说自己的理由。                

       2、学生合作学习,互相交流,验证猜测的方法和结果是否正确。

                     师:你能用什么方法验证他的猜想是否正确吗?

                     后生汇报:

①画线段图。

②涂阴影部分。(注意选取学生不同的表示方式呈现)

                【设计意图:创设探究空间,激发学生探究兴趣,让每个孩子在

                    活动中体验分数除以整数的计算过程,初步领悟计算算理。】

          师:哪位同学愿意和大家分享一下你的验证过程,说说你的想法。

                 学生通过不同的方法,分析算理,可能出现的想法有:

                    ①4个 1/5平均分成2份,每份是2个1/5  即 2/5。

② 4/5平均分成2份,每份就是4/5 的1/2  

 3、通过刚才的动手操作与交流,我们发现 ÷2有两种不同的计算方法。(教师随机板书)

4/5÷2 = 4÷2/5=2/5    (分子是整数的倍数)

  

       4/5÷2=4/5 × 1/2=2/5

请同学们对不同的计算方法比较并进行简单的小结。

 【设计意图:通过比较学习,充分调动学生思维的积极性。】

4、设置障碍4/5÷3=?,学生尝试练习。

 师:用哪一种方法计算好呢?为什么?并说一说

【设计意图:让学生认识分数除以整数的一般方法。】

 过程中学生会发现:

① 4/5÷3 = 4 ÷3/5      (4÷3得不到整数,不能直接计算出结果。)

② 4/5÷3= 4/5×1/3 =4/15

学生还可能出现的其它方法:

③ 4/5÷3 =12/15 ÷3=12÷3/15 =4/15          (依据分数基本性质)

④ 4/5÷3=( 4/5×5)÷(3×5)=4/15        (依据商不变的性质)

5、课件演示,验证 ÷3的结果是否正确。

6、引导学生通过4/5 ÷2与 4/5÷3的计算归纳自己的发现。

发现一:方法一即用分子和整数相除的商作分子,分母不变,只有分子是整数的倍数时,才能直接计算出结果。

发现二:方法二不受条件限制,任何情况下均可使用。

师:那么我们运用方法二时应注意些什么呢 ?

(一不变:被除数不变   二变:①除号变乘号,②变除数的倒数)

【设计意图:让学生从计算过程中发现方法一存在局限性,方法二具有普遍性。】

7、谁能用一句话归纳分数除以整数的计算方法?

归纳计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。(先学生尝试归纳,后课件呈现并板书)

【设计意图:通过尝试练习和验证,归纳总结出分数除以整数的一般方法,以此达到让学生既理解算理又牢固掌握计算方法的教学目的。】

三、闯关练习

1、第一关:算一算

          6/7÷2       8/9÷4          9/13÷6              5/3÷10

2、第二关:改一改

          6/7÷4= 6/7×4=24/7

          5/8÷10=8/5 ×10=16

3、第三关:想一想

如果a 是一个不等于0的自然数,

(1)1/3÷a等于多少?

(2)1/a÷3等于多少?

(3)你能用一个具体的数检验上面的结果吗?

4、提升作业。

你能观察出下面两列数的规律吗?请你在括号里填上适当的数。

(1)4/5 、2/5 、1/5 、(   )、1/20、(   )、(  

(2)1/2 、1/6 、1/16 、(   )、(   )、(  

【设计意图:分层安排练习,突出教学重点,进一步巩固分数除以整数的计算法则的作用。】

四、作业

                 教材31页做一做1前面两小题,32页第3题。

板书设计:

                    分数除以整数

        4/5÷2 = 4÷2/5= 2/5  (分子是整数的倍数)

        4/5÷2= 4/5×1/2=    普遍性

        分数除以整数(0除外),等于分数乘这个整数的倒数。

 

 

 

给学生更多的空间,更多关注学生的终身发展

                   ——《分数除以整数》教学反思

 

“分数除以整数”这节课是分数除法的起始课,整个教学效果较好,学生掌握情况良好,具体表现在:学生始终以积极的态度投入每一个环节的学习中,在主动进行探究的过程中,对“ 4/5 ÷2”和“  4/5÷3”的算法有了具体的认识,且分析思考出分数除以整数的一般性计算法则。

反思整个教学过程,我认为成功的关键在于学生是通过自主探究获得知识的,具体分析如下:

1、研究学生如何学比研究如何教更重要。

学生对新知识的学习必须以已有的知识和学习经验作为基础,因此正确分析学生的知识基础和学习经验就显得格外重要。我认为分数除以整数的教学基础在于以下几点:分数的意义、分数乘法的意义、倒数的知识、分数的基本性质和商不变的性质等。这些知识在以前的学习中,学生都有了足够的掌握。有了上面的分析基础,我觉得把研究新知识的权力教给学生,是完全可以的。

2、改变传统的教学设计。

(1)学习内容的迁移。

在教学分数除以整数之前,先复习分数乘整数,利用学生的思维惯性,制造知识冲突,后让学生猜测“ 4/5 ÷2”的结果,最后设置障碍“  4/5÷3”,这些充分体现了《新课程标准》要求的“学生的数学学习内容应当是现实的、有意义的、富有挑战性的”这一理念。

(2)解题方法来自于学生。

面对新知识的学习,不是教师去讲解、灌输,而是让学生自主探求解决问题的方法。这为学生提供了充分的学习空间,学生的思维是发散的,学生的方法是多样的。学习活动中,学生自己去思考、去经历、去交流,对“ 4/5 ÷2”的研究确实很到位,想出了画线段图和涂阴影部分的验证方法,而且计算的方法不唯一性。从研究的结果看,说明学生有很强的求知欲,有去经历学习过程、探索过程的强烈热情,这是学生个体的需要,也是张扬学生个性的过程。这一过程恰恰体现了学生们具有学习的主动性和主体意识。

(3)评价与反思的过程,让学生有所悟。

学生从各自的数学实际出发,用不同的学习经验和知识基础,对 4/5 ÷3的探讨出现了多种不同的思维方式:有的学生利用分数基本性质将转化后再用方法一来计算,方法得到回归,同时结果也得到了验证;有的学生想到把分数除法转化成分数乘法(即方法二)进行计算等等。当学生出现这些方法,教师要求学生把这些方法进行分析,能够对每一种方法进行评析。在学生们的互相交流和评价中,引发了对所学知识的更深思考,同时学生反思出这些方法都是运用旧知识解决的。在这个过程中,学生能够体验和感悟到学习数学的科学方法及学习数学趣味无穷。这对学生今后的学习和发展非常重要。

     存在的问题:

1、数学语言讲究严谨性、准确性、精练性,数学语言关系到课堂的每个细节,自己的语言还需要进一步的锤炼,如评价语、总结语等等。细节决定成败,哪怕每一个引发学生思考的问题的语气都需要去揣摩。

2、教育机智需要进一步加强,学生出错的地方要及时并选择合适的方法去应对。

进一步思考的问题:

探究的主体是学生,让学生通过“自主探索、动手实践和合作交流”获取新知识、学会学习是教师们共同认可的。但在教学设计和实施过程中如何找准教学的起点,如何给学生充分的探究空间,让学生在课堂上充分地进行研究、讨论和交流,从而获得真正的数学知识,同时使能力的培养、情感态度价值观都得到和谐的发展仍然是我们进一步探讨和研究的问题

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有