求下图中任意两点间的最短路 :
Floyd算法描述:
设A = (aij )n×n为赋权图G = (V, E, F)的权矩阵, dij表示从vi到vj点的距离,
rij表示从vi到vj点的最短路中一个点的编号.
① 赋初值. 对所有i, j, dij = aij, rij = j. k = 1. 转向②.
② 更新dij , rij . 对所有i, j, 若dik + dk j<dij , 则令dij = dik + dkj , rij
= k, 转向③;
③ 终止判断. 若k = n终止; 否则令k = k + 1, 转向②.
最短路线可由rij得到.
Matlab程序:
%floyd1.m文件
function [d,r1]=floyd1(vx,vy)
b=inf;
a= [ 0 2 8 1 b b b b
2 0 6 b 1 b b b
8 6 0 7 5 1 2 b
1 b 7 0 b b 9 b
b 1 5 b 0 3 b 8
b b 1 b 3 0 4 6
b b 2 9 b 4 0 3
b b b b 8 6 3 0 ];
d=a;
vx=vx+1;
vy=vy+1;
global r;
r=a;
for i=1:8
for j=1:8
d(i,j)=a(i,j);
r(i,j)=j;
k=1;
end
end
for k=1:8
for i=1:8
for j=1:8
if d(i,k)+d(k,j)<d(i,j)
d(i,j)=d(i,k)+d(k,j);
r(i,j)=k;
end
end
end
end
r1=r-1;
fun3(vx,vy);
%fun3.m文件
function fun3(vx,vy)
global r
t=r(vx,vy);
if vy==t
return
else
fun3(vx,t);
disp(t-1);
fun3(t,vy);
end