一题多解练习中的数学思想
(2018-10-23 11:03:18)一题多解,从某方面而言,体现了数学思想。我国著名数学教育家姜伯驹院士曾多次强调,应该在教材和教学过程中注入数学思想,发挥数学思想方法的作用,培养应用意识和能力。可见,数学思想和数学方法是数学知识应用的根基和源泉。从案例提供的一题多种解法我们可以得知以下数学思想在小教学中的应用。
一、算术解法正是假设思想的体现,假设思想是一种常用的推测性的数学思考方法.它对一些无从下手的题,先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,最后找到正确答案的一种思想方法。比如,按学生现有的知识,解此题较困难,在实际教学中,数学教师就可以引导学生从假设思想开始推断,得出结论。
二、代数解法体现了数学思想中的方程思想。笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。方程思想在数学中的应用是十分广泛的。哪里有等式,哪里就有方程;哪里有公式,哪里就有方程。上面的案例就有很好的体现,当然,还有其它的数学思想值得平时教学实践中引导学生进行运用。著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。这些数学思想几乎包摄了全部小学数学内容,符合小学生的思维能力及他们的实际生活经验, 易于被他们理解和掌握,在小学数学教学中, 有机地渗透这些数学思想可以为进一步学数学打下较好的基础。
各个案例的一题多解,通过算术解法、和代数的方程解法得道答案,正是发散性思维的体现,在平时,倘若学生遇到每一道习数学题,能够做到一图多问,一题多议;在条件和问题不变的情况下多角度、多侧面地进行分析思考,探求不同的解答,从不同方面多解,对学生的益处不言而喻。无论答案对错,教师应积极地诱导并鼓励他们别出心裁地思考问题,大胆地提出与众不同的意见与质疑,独辟蹊径地解决问题,这样才能使学生思维从求异、发散向创新推进。
还有一点就是“一题多解”可以激发学生学习的兴趣。从学生的角度出发,兴趣是做好任何事情的前提,数学也不外乎于此。一题多解,可以提高学生对数学学习的兴趣。小学生具有挑战自我的特性,用于表现自我,在课堂上进行一题多解式探讨教学,使学生对学习数学更有兴趣,学生便会真正投入到数学的世界里。众所周知,兴趣是最好的老师。从教育心理学的角度而言,兴趣是感情的体现,是学生学习的内在因素。事实上,对于任何学生而言,只有感兴趣才能自觉地、主动地、竭尽全力去观察它、思考它、探究它,才能最大限度地发挥学生的主观能动性。只有打开学生学习数学的兴趣大门,让小学生学习数学经历一定的学习过程,才能在头脑中形成数学的知识和认知结构。
最后,“一题多解”可以减轻教师教学负担,转变教师教学模式。从教师的角度出发,“讲解——接受”的教学模式,恪守陈规,忽视了学生的课堂主体,教学方法单一,枯燥,容易使学生失去学习兴趣,如果将此案例的多种解法转变成教师一人的讲解,无论你怎样讲,怎样去解出此题,一节数学课下来,整个课堂就是老师一个人的舞台,学生像个听众,只是被动的接受。结果一堂课死气沉沉,学生感觉不到兴趣,从而昏昏欲睡,学生对教学难点的掌握可想而知,学习效果也同样可想而知。同样放手放给学生,教学效果、学习效果就有大不同。