加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

素数间隔任意大的错误根源

(2023-10-27 10:40:49)

长期以来数学界存在一种谬论,即“认为相邻素数间隔可以任意大“,其中尤以菲尔兹奖得主梅纳德的话更能迷惑人,其理论依据是如下表达式:(N!+2)/2, (N!+3)/3, (N!+4)/4,.. (N!+N)/N,都可以整除,且N可以任意大(当然含无穷),所以相邻素数间隔可以任意大,并且将此结论写入教科书,一般看来该理论可信度极高,确实N任意大都可以整除,且每一项都是合数,说明这个合数可以不断延长,真至无穷。

另外一种证明“素数间隔可以任意大”的理由是:任选一个正整数 n>1 ,我们都可以找到连续 n 个自然数,使得它们都不是素数。也就是说,在这组自然数两侧的两个相邻的素数之间的距离肯定大于 n 。构造这样的连续n个自然数很容易,我们知道 (n+1)!+2(n+1)!+3......(n+1)!+n(n+1)!+(n+1) 这连续 n 个自然数肯定都是合数。其实这是(N!+N/N表达式的变种,两者没有本质区别,它们都是回避了 (n+1)!+1N+1的事实,都是为了证明“相邻素数间隔任意大”而编造的骗人的把戏!

该理论表面看起来似乎无懈可击,其实是一场掩耳盗铃的自欺欺人的骗术,极易忽悠与麻痹人,使人上当受骗,其骗人的关键点是回避了+1”的事实!是非常错误的,证明其错误的根据如下:

1, 连续的自然数数列都是以1”为单位顺序增加的,假设连续的自然数数列以自然数n为首数,则该数列必然是: n,n+1,n+2,n+3…n+…,如果删除【n+1】使其成为n,n+2,n+3…n+…,那么就不是连续数列,因此,用其表示连续数列是违反连续数列排列规则的,是无效的:同理,n!,n!+2,n!+3…n!+…也是违反连续数列排列规则的,是无效的。

2, 相邻素数间隔形如: phhhhhh…p,在前后两个p之间的hhhhhh…是合数链,而任意合数链中的前后2h=2r (偶数),任意合数链不断延长的最后一个合数都是h=2r+1

   2r偶数+1=p&h素数或合数,

h=2r+1=p&h素数或合数,

 素数p在自然数中的概率=π(x)/N={(N/lnN)}/N=1/lnN

h=2r+1=p的概率为1/lnN

结论:

任意合数链末项均为h=2r偶数),且当合数链延长后则h=2r+1=p的概率为1/lnN,此时合数链终止,所以相邻素数间隔就不会继续延长,即不存在“素数间隔任意大”的现象,则证明认为“素数间隔任意大”的观

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有