加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

谈谈地基土三个不同的力学模量

(2013-12-23 14:58:53)
标签:

土的力学模量

柱底嵌固刚度

压缩模量

土的弹性模量

建筑结构水平荷载

分类: 地基基础理论与实践

谈谈地基土三个不同的力学模量

——兼对《结构设计中柱底嵌固刚度的分析与探讨》[1]一文的商榷意见

                        古今强

 

 

Kingckong按:本文是针对《第三届全国建筑结构技术交流会论文集》(《建筑结构》2011年增刊)其中一篇文章的商榷意见,成文于2012年2月.希望对感兴趣的朋友有启发。 

 

1   地基土三个不同的力学模量[2]

在计算地基变形的环节,存在着三个试验方法不同、应用条件各异的力学模量:

1)压缩模量Es:由压缩固结试验(完全侧限的情况下)测得。规范[3]推荐简化的分层总和法,计算结果是长时间荷载作用下、土体完全固结后的地基最终沉降量,计算应采用压缩模量Es

2)变形模量E0:根据现场压板荷载试验的p-s曲线的初始直线段,按均质各向同性半无限弹性介质的弹性理论计算出来,是在无侧限的情况下求得的。用规范[4][5]的弹性理论公式估算地基最终沉降量时,应采用变形模量E0

3)弹性模量Ed:可由室内三轴压缩试验确定,用来计算短时间内快速作用荷载时土的瞬时沉降、高耸结构物在风荷载作用下的倾斜等。

Ed用来计算瞬时或短时间内即将快速作用着荷载时土体的变形,EsE0用于只是一次性加载条件下假定是线弹性体的土体最终变形的计算,EsE0的区别在于是否存在侧限。

结构工程师平常接触得最多的,就是用压缩模量Es按规范[3]的方法计算地基最终沉降量,容易在潜移默化中误以为Es是地基土唯一的力学模量,忽略了三个力学模量的适用条件,造成判断失误。下面结合一个案例进一步探讨。

2   案例分析

[1]的第1部分经过计算分析,认为地基土对独立柱基础的约束刚度不容忽视,基底抗弯刚度与柱的抗弯刚度相差太大,地基土无法将混凝土柱嵌固而不发生转动,因此按柱底嵌固在基础顶面进行计算将产生安全问题。上述结论值得探讨,下面是笔者的商榷意见。

2.1  关于地基土的力学模量

[1]选取了图1所示的模型,基本条件为:C30钢筋混凝土方柱,截面为500×500,柱高5m,在柱顶作用水平力H=20kN,竖向力V=500kNC30混凝土基础2.5m×2.5m×1.5mh),地基土取10m×10m×5mh)的范围,地基土压缩模量Es=10Mpa。分别假定:1)基础底面完全固定;2)按实际地基土的压缩模量计入地基土的实际变形。采用ANSYS进行了有限元计算对比,计算结果见表1,似乎由于基底土被压缩、基础转动而产生的柱顶位移,远大于混凝土柱弯曲产生的位移

 

http://s10/mw690/557d7ea6g7b5d4523a4f9&690

1  [1]独立基础计算模型

 

[1]对图1的计算结果                  1

计算假定

柱顶水平位

Δ1/mm

柱底水平位

Δ2/mm

柱顶位

移角θ

基础底面

完全固定

5.5

0

1/909.1

Es=10Mpa计入地基的实际变形

42.02

5.83

1/138.2

上述论断是不成立的,本文无意细究计算软件的具体应用,仅从选用力学模量的角度进行探讨。对图1的柱顶位移,无论是基底土被压缩、基础转动而产生的柱顶位移,还是混凝土柱弯曲产生的位移,都是水平力H作用的结果。对建筑结构而言,这通常是风荷载或地震作用,都属于重复荷载,每次作用的时间很短。此时土体中的孔隙水来不及排出或不能完全排出,压缩变形还来不及发生,因此大部分仍属可恢复的变形,这种情况应当用地基土的弹性模量Ed计算。

对中压缩性土(Es=4~15Mpa)和低压缩性土(Es>15Mpa),土的弹性模量Ed要比压缩模量Es大得多。根据文献[6][7],汇总了广州地区部分经验数据于表2,可见Ed可能是Es的十几倍或者更大,而且土越密实(Es越大),相差的倍数越大。这是由于土越密实,Es试验值受土的取样扰动越大。在规范[3]中,土越密实(压缩模量当量值越大)、沉降计算经验系数ψs越小,原因也是如此。文[1]采用了数值偏小许多的压缩模量Es,计算出实际上不可能那么大的柱顶位移值。

广州地区地基土EsE0Ed部分经验数据        2

地层

岩土名称

主要

指标

Es/

MPa

E0/

MPa

Ed/

MPa

Q4mc

淤泥质

粘土

w=45%

3.05

1.2

3.6~4.8

w=50%

2.63

1.0

3.4~4.0

w=55%

2.40

0.9

2.7~3.6

Q3al

粘土

w=20%

6.34

25.0

75.0~100.0

w=25%

5.21

20.0

60.0~80.0

w=30%

4.37

15.0

45.0~60.0

w=35%

3.75

8.0

24.0~32.0

w=40%

3.28

5.0

15.0~20.0

备注

Es经验数据按文[6]土的物理与力学指标相互关系经验公式推算得出,E0Ed经验数据摘录自文献[7]

2.2  关于基础底面与柱抗弯刚度比

[1]按式(1~3)计算基础底面与柱抗弯刚度比,并做了一个简单算例,计算结果见表3

柱抗弯刚度:Kc=EcIc                     (1)

基础底面的抗弯刚度:Kb=EsIb             (2)

抗弯刚度比:η=Kb/Kc=EsIb/EcIc             (3)

式中:EsEc分别为土压缩模量和柱的弹性模量,IbIc分别为基础底面和柱截面的惯性距(注:原文将式(3)写为η=Kb/Kc=EcIc/EsIb,应为笔误)。

[1]基础底面与柱抗弯刚度比η的算例结果       3

方形独立柱基础边长/m

1.5

2.0

2.5

3.0

4.0

Es=5MPa

0.014

0.043

0.104

0.216

0.683

Es=10MPa

0.027

0.085

0.208

0.432

1.365

Es=15MPa

0.041

0.128

0.313

0.648

2.048

备注

C30钢筋混凝土柱,截面500×500计算

从表3的结果来看,似乎当基础底边长与柱边长之比在3~6时,η值均小于1,尤其基础底边长与柱边长之比在4以下时,η值均小于0.1,基础很难将柱嵌固不动。这个论断存在以下问题:

1)地基变形不仅局限在基础底面,换而言之,基础外面一定范围的地基土也对混凝土柱嵌固有贡献。式(2)、(3)只考虑了基础底面地基土的贡献,导致η值偏小。

2)与上文相同,这时候考虑的水平荷载通常是风荷载或地震作用,式(2)、(3)应采用地基土的弹性模量Ed,文[1]采用了数值偏小许多的压缩模量Es,极大地低估了η值。

3)只要用Ed计算,通常情况下η值应大于1.0。可能在EsEd)较小且基础底边长与柱边长之比也小的特殊情况下,η值会小于1.0。这种情况并不常见,因为EsEd)小,地基承载力也小,相同的上部荷载(即柱截面尺寸相同)就需要更大的基础底面,即需要更大的基础底边长与柱边长之比。

3   结语

[1]的图1和表3是探讨在风荷载或地震作用下地基土对独立基础以及上部混凝土柱的嵌固程度。风灾容易引起钢结构破坏[8-10],其导致混凝土结构或独立柱基础破坏则十分罕见;根据文献[11],在1976年唐山地震的烈度1011度区,一般粘性土和密实砂土地基基础的震害现象并不突出,独立基础无倾斜,条形基础也无明显沉降差。工程实践表明,按柱底嵌固在基础顶面通常是安全的。文[1]误用了土的力学模量,得出与工程经验不符的结论。当然,文[1]的作者对习以为常的计算假定进行思考,通过独立分析提出自己的观点,这种勇于探索的精神是值得肯定的。

地基基础设计应摒弃上部结构设计时形成的依赖定量分析的设计思想,强调定性分析与定量分析相结合[12]。以本文讨论的地基土力学模量为例,需要注意其适用条件,并结合工程经验对分析结果进行判断,否则即使采用计算精准的ANSYS有限元计算,仍会造成判断失误。

     

[1]       金杰,邹剑强,刘明辉. 结构设计中柱底嵌固刚度的分析与探讨[J]. 建筑结构201141S1):662-664.

[2]       赵明华,李刚,曹喜仁等. 土力学地基与基础疑难析疑[M]. 北京:中国建筑工业出版社,2003.

[3]       GB50007—2002建筑地基基础设计规范[S]. 北京:中国建筑工业出版社,2002.

[4]       JGJ6-99 高层建筑箱形与筏形基础技术规范 [S]. 北京:中国建筑工业出版社,1999.

[5]       JGJ72-2004 高层建筑岩土工程勘察规程 [S]. 北京:中国建筑工业出版社,2004.

[6]       林本海,李业茂,石汉生. 广州地区土的物理力学特性指标的分析 [C]// 广东岩土工程测试技术研讨会论文集,1997.

[7]       陆培炎,熊丽珍. 广州地区各岩土层的力学计算参数 [C]// 陆培炎科技著作及论文选集. 北京:科技出版社,2006.

[8]       王士奇,刘仲波. 轻型门式刚架风灾破坏形式及其工程措施[J]. 钢结构2006215):25-2795.

[9]       王赛宁,李文波. 从风荷载对轻钢结构房屋的破坏看抗风设计[J]. 中国建筑防水2010,(7):9-15.

[10]    朱若兰. 轻钢结构工程事故分析[J]. 中国建筑金属结构,2008,(9):37-41.

[11]    国家建委建筑科学研究院地基基础研究所. 地基基础震害调查与抗震分析(唐山地震调查报告)[M]. 北京:中国建筑工业出版社,1978.

[12]    古今强,侯家健. 浅谈结构工程师对岩土勘察报告的研读与使用[J]. 建筑结构·技术通讯2009395):16-1912.

 

相关阅读1:参考文献[1]

http://s6/mw690/557d7ea6gd1df494fab75&690

 

http://s6/mw690/557d7ea6gd1df5b5d2cd5&690



http://s11/mw690/557d7ea6gd1df5b9cd5ba&690


http://s2/mw690/557d7ea6gd1df48fc67a1&690



 

 

 

相关阅读2:参考文献[6]

 http://s6/mw690/557d7ea6gd1a4d47700c5&690



http://s5/mw690/557d7ea6gd1a4d4a350b4&690



http://s5/mw690/557d7ea6gd1a4d4d1c2c4&690



http://s3/mw690/557d7ea6gd1a4d504e0b2&690



http://s16/mw690/557d7ea6gd1a4d54b178f&690

 

 

 

相关阅读3:参考文献[7]

 http://s10/mw690/557d7ea6gd1a4e292e789&690

http://s6/mw690/557d7ea6gd1a4e3a56955&690

http://s12/mw690/557d7ea6gd1a4e4d7210b&690

http://s6/mw690/557d7ea6gd1a4e5b6ff85&690

http://s3/mw690/557d7ea6gd1a4e6f801c2&690

http://s4/mw690/557d7ea6gd1a4e7977903&690

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有