加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

中文自然语言处理工具介绍

(2017-03-09 16:39:42)
标签:

中文

语义

语义网络

分词

自然语言分析

分类: Python与AI
自 然语言处理是人工智能领域中的一个重要方向。它研究能人机之间通讯的方式,并涉及机器对人类知识体系的学习和应用.从分词,相似度计算,情感分析,文章摘 要,到学习文献,知识推理,都涉及自然语言分析.下面介绍一些中文语言语义分析的资源.(以下只讨论能嵌入到我们程序里的资源)

1.       同义词词林
《同义词词林》是80年代出版的一本词典,这提供了词的归类,相关性信息,起始主要用于翻译,哈工大对它进行了细化和扩充,出了《词林扩展版》,其中含有7万多词,17000多种语义,五层编码.12大类,94中类,1428小类,形如:
Aa01A01=
人物 人士 人氏 人选
每一个条目对应一种语义,根据分类编号:第一位大写表示大类,第二位小写表示中类其中涉及了一词多义和一义多词.
《词林扩展版》网上的下载很多,大小不到1M,可以直接load到程序中,用于简单的分词,文章分类,模糊查找,统计,情感分析(不同感情色彩对应不同类别号)等等.

2.       哈工大语言云(LTP)
中文的语义分析工具,大多数都像LTP这样,提供一个在线的分析器,一组API,比较简单稳定的功能.LTP是其中做得比较好的.
它提供了中文分词、词性标注、命名实体识别、依存句法分析、语义角色标注等等功能.但对于进一步语义方面的深入的开发,用处不大,而且需要连网使用,速度和处理数量上都有一些限制.
详见:http://www.ltp-cloud.com/demo

3.       结巴分词
结巴是一个Python的中文分词组件.它提供了分词和词性标注功能.能在本地自由使用, Python实现的, 可以很好的和其它Python工具相结合,使用方法如下:
#encoding=utf-8

import jieba.posseg as pseg

import jieba

 

seg_list = jieba.cut("我爱北京天安门", cut_all=True)

print "Full Mode:", "/ ".join(seg_list)

 

words = pseg.cut("我爱北京天安门")

for w in words:

   print w.word,w.flag

 

执行结果是:
Full Mode:
/ / 北京/ 天安/ 天安门

r

v

北京 ns

天安门 ns
详见: http://www.oschina.net/p/jieba/

4.       知网 HowNet
对于语言的理解, 人们更关注语义,即研究文字真正的含义是什么,并希望机器能像人脑一样把知识组织成体系.
中文语义库开放的资源非常少,《现代汉语语义词典》,《中文概念辞书》这些都是听说过没见过,总之人家是不开放. 就算能去书店买一本, 也用不到程序里. 我在网上只找到了HowNet (可以在csdn下载, 压缩包1.5M左右). 形如:
NO.=069980

W_C=群众

G_C=N

E_C=

W_E=the masses

G_E=N

E_E=

DEF=human|,mass|
可以看到它包含:编号, 中文词, 对应英文词, 词性, 12万多项.
HowNet
2013年后就不更新了, 以上版本差不多是能在网上找到的比较全的数据了. 它还提供了一些库, 可用于判断相似度等.
详见:http://www.keenage.com/html/c_index.html

5.       NLTKWordNet (sentiwordnet)
WordNet
是一个语义词典, NLTKPython的一个自然语言处理工具,它提供了访问WordNet各种功能的函数。WordNet形如:
n   03790512    0   0   motorcycle#1 bike#1 a motor vehicle with two wheels and a strong frame
其中含有词性, 编号, 语义, 词汇间的关系(同义/反义,上行/下行,整体/部分…), 大家都觉得"它很棒, 只可惜没有中文支持". 其实也不是没中文支持. WordNet有中文以及其它更多语言的支持, 可以从以下网址下载:
http://globalwordnet.org/wordnets-in-the-world/
其中的数据文件形如:
03790512-n  cmn:lemma  
摩托车
可以看到,它与sentiwordnet的词条编号一致,尽管对应可能不是特别完美,但理论上是:对英文能做的处理,对中文也能做.
NLTK+WordNet
功能非常丰富,强烈推荐《PYTHON自然语言处理NLTK Natural Language Processing with Python》这本书,它已由爱好者译成中文版,可从网上下载.里面不但讨论了具体的实现方法,还讨论了一些研究方向,比如"从自然语言到一阶逻辑"

6.       随想

对语言的处理,首先是分词,然后是消歧, 判断词在句中的成份, 识别语义.形成知识网络...希望最终机器能像人类一样,学习,思考和创造.
语言处理在不同的层次有不同的应用:从文章分类,内容提取,到自动诊断病情(IBM Watson),或者存在更通用的逻辑,使机器成为比搜索引擎更智能的各个行业的专家系统.

自然语言和语义看似多对多的关系,我觉得本质上语义转换成语言是从高维到低的投影.从词林的分类看,真正核心的概念并不太多,但是语义的关系和组合很复杂,再深层次还涉及知识线等等.而语言只是它的表象.在分析过程中,越拟合那表象,差得越多.
另外,这一领域已经有几十年的历史了,学习时尽可能利用现有工具,把精力集中在目标而非具体过程.多参考人家都实现了什么功能,人家的数据是怎么组织的.

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有