加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

小泰齐自创2位数除法速算!

(2016-09-04 00:18:47)
标签:

李泰齐

速算方法

育儿

创新

  今天泰齐又发生一件让我非常非常高兴的事情,一定要说说!因为泰齐给我讲解了3遍,我才明白他说的到底是什么?一定要记录下来!(也许若干年以后泰齐也可以像高思一样呢!)    

  http://s16/bmiddle/001yeJBDzy74Apu01PN4f&690

      今天我在给他检查数学时,发现他几乎所有的除法题居然都没有列竖式,直接就得出了答案。以前可不是这样,总是按部就班的列出,歪歪扭扭的,看着乱七八糟的。

      今天卷面格外干净,只有答案。害得我在检查时还得用红笔在下面算一下才能判断对错!他做这些题时我不在,我第一个想法是觉得他是口算,可是判到后面满篇都没有竖式,不可能都口算吧!我感觉这些题目不适合口算,泰齐不会是写在草稿纸上了吧?可这也不符合他的风格呀?难道因为今天是把泰齐寄存到一诺家,不会是一诺妈妈帮他做的吧?可是看了半天这些字也不像大人写的呀!难道是他为了赶快玩,让大人说答案,他写出来的?也不对!这些除法对于小孩来说,很难口算吧!我检查时算了半天呢!没有不列竖式的理由!
    
  于是,耐着性子检查完,把泰齐叫过来,准备教训他一顿!

     “你的这些除法怎么都没列竖式呀”我态度有些生硬!

      “我口算就能算出来了呀!”泰齐很得意的样子!

       “真的、假的?这些题怎么口算呢?”(我心里不相信他的话,我刚才用笔还算了半天呢!)

          我就是口算的呀!不信你看“比如:这270除以29吧”

               http://s4/mw690/001yeJBDzy74xFUjxTlf3&690

        (注:红笔部分是我检查时写的)

       29差1就30了吧?270除以30好做吧?等于9。30和29差1吧?于是就是商9余9啦!”

     “等等,等等”前半部分我还能听明白,这后半部分讲的啥?怎么就余9了?我被这新奇的解法给搞蒙了,完全没明白后半部分。

        于是泰齐又给我讲了一遍:“29可以想成30吧?270除以30就等于27除以3吧?”

      “对,这个可以,可是后面的余数怎么出来的,怎么就得9了”

       “30和29差1吧?商9了,是不是就差了9个1呀?那不是就余9了么?”

          我半信半疑!是不是碰巧呀?“那下面这道,540除以89呢?”

          89可以想成90吧?540除以90等于54除以9吧?商6对吧?90和89差1吧,还差6个1就余6了。

                http://s2/mw690/001yeJBDzy74xFVUZkRf1&690

                (注:红笔部分是我检查时写的)

             我一看,还真对!原来,泰齐自己发现了除数末位数是9的简便算法!!!

         “你这个是碰巧吧?刚好都是整倍数关系所以容易算。”

             我还要确认这不是巧合。

             泰齐很耐心又给我举例“那你看这道330除以39不是整倍数关系了吧?

                    http://s14/bmiddle/001yeJBDzy74yVvk4P31d&690

                 (注:红笔部分是我检查时写的)

         “39离40很近330除以40商8对吧,330和320差10,所以8上面再加上10不就行了么?”

       说实在的,虽然我听明白了他讲解。但是,还是没有真正明白为什么是加而不是减,为什么差8就8,而不是8的补数之类的?总之我的大脑已经短路了。反正他的结果是正确的。而且每道题都符合这个规律!至于我能不能明白已经不重要了!

       泰齐能自己发现规律,创新算法真是让人高兴!

        昨天还叫喊着:“我不喜欢做计算题,尤其是除法,更不好玩,我只喜欢奥数,我喜欢刨坑。”(因为我告诉他奥数里尽是陷阱,一不小心就会掉进去)!

        今天就找到了兴趣,继续坚持下去

             下面的题就是泰齐今天做的,正好今天做的都是末位数是9的题。

         http://s6/bmiddle/001yeJBDzy74ze3xr2515&690

      (注:红笔部分是我检查时写的)

         第二张就不是整倍数的关系了,而是随机的!

        http://s7/bmiddle/001yeJBDzy74xFZTQ9M66&690

       (注:红笔部分是我检查时写的)

    “那末位数是8的能不能也用这种方法呢?“

      “当然可以啦!乘以2就可以啦!”泰齐想也没想就回答到!

         真的?我又出了几道末位数是8的题进行验算。还真是的!那末位数是7、6的是不是也可以呢?我们继续研究,剩下的情况就复杂了,有的情况可以,有的情况就不符合规律了! 

        小朋友能有这样的数学敏锐度还真是难得!能在做题中发现规律,总结经验,创新方法,还真是棒棒哒!立马很痛快的奖励了2本书(他一直希望得到)!鼓励他以后发现更多的新方法。

        泰齐觉得很惊奇!“这么容易就得到2本书?这也太容易了吧?”(因为以前给他新书看都是百般刁难才能得到一本)

      “主要是因为你动脑筋想办法才奖励你的呀?怎么样?用智慧挣书很容易吧?

         泰齐压根也没认为自己的这个想法有什么特别!如果不是我追问,他可能都不会说出来,认为这是很平常的行为!只有我心里明白,他是跨出了怎样的一步质的飞跃!由以前的单纯的计算练习,经过量的积累,引起了质的飞跃。勇于突破常规,开拓思路,自己研究出新的速算方法。这是我作为一个成人也不能达到的,更何况他还是一个刚开始上学2天的小一新生。

        我奖励他书,是希望他能记住:‘通过自己的智慧能很轻松的赢得惊喜’的这份感觉,让他喜欢上这种感觉!以后能经常的开动脑筋,涌现出更多的新方法!

 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有