任何物体的能量都等于质量和自身速度平方的乘积
(2022-11-17 13:42:08)
标签:
理论研究学术研究 |
分类: 物理理论 |
一、特殊粒子光子举例说明
根据普朗克关于光子能量的论述,一个光子的能量E=hγ——(1),其中h是普朗克常数、γ是光子的频率,根据德布罗意波波长的公式:λ=h/p——(2),c=λγ——(3),联立方程(1)、(2)、(3)我们可以得出:E=pc——(4),即光子的能量能等于光子的动量乘以光速。说明光子存在动量,既然光子存在动量,那么光子一定也存在质量,只不过光子是光速运动的质量,而一般物体是小于光速运动的质量。光子不具有特殊性,一般的粒子(物体)更不具有特殊性,质量都是存在特定速度的质量。猜想:是否所有物体的能量都是:pv,即能量等于动量乘以相对应的速度。下面证明这一猜想是正确的
二、证明小于光速运动的物体能量表示也是pv
假设物体的质量为M、速度为v,由于辐射物体损失的质量是m,由于是辐射,所以m的速度是光速,剩余的质量是(M-m),剩余质量的速度是v1。动量守恒定律要求系统只受内力的作用即可,没有时间的限制,也就是说,作用的时间可长、可短,可以是几年或更长。根据动量守恒定律得:Mv=(M-m)v1-mc——(5),解得:v1=(Mv+mc)/(M-m)——(6),由方程(5)我们还可以得出此时物体的动量p=(M-m) v1=Mv+mc——(7),联立(6)、(7)解得,此时物体的pv1=(Mv+mc)^2/(M-m)= (M-m)v1^2,即证明了小于光速的物体它的能量表示方法也是pv,因为p=mv所以pv等于mv^2。即没有达到光速运动物体的能量可以表示成:mv^2。
三、宇宙何时开始、何时结束
我们再分析方程Mv=(M-m)v1-mc——(5),当v趋近于零时,即是宇宙开始的状态, Mv趋近于零,方程(5)化简为:0=(M-m)v1-mc——(7),当宇宙由于辐射质量损失一半时,即m=M/2——(6)时,联立(6)、(7)解得:v1=c,我们可以得出结论,当宇宙的质量损失一半时,宇宙光速运动,质量不能在损失,宇宙结束孕育新的宇宙。
四、宇宙存在动态恒等式
五、结论
小于光速和等于光速物体的能量表示方法是相同的,都可用动量乘以对应的速度表示,也可以用质量乘以对应速度的平方表示,即都可以写成pv或mv^2。任何物体的能量都等于mv^2,其中m是物体的质量、v是物体质量运动的速度,爱因斯坦质能方程是光速运动质量的能量表示,是稳定的能量、是能量特例。