双缝干涉试验
| 分类: 教育 |
如果电子是互不干涉地运动,穿过双缝落到黑板上是两道痕迹。
如果电子是以波的形式运动,由于波之间存在干涉,穿过双缝落到黑板上是一道道痕迹。
一开始实验表明电子以波的形式运动。即使一个个电子发射,黑板上还是一道道痕迹。
于是科学家想知道为什么一个个电子发射也会有波的现象,于是将高速摄像机对准双缝以便观察。
重点来了:当想进一步观察时,粒子却是是互不干涉地运动,穿过双缝落到黑板上是两道痕迹!!!
如果在双缝实验中加入观测仪器,只要光子一干扰到电子的运动,干涉条纹就会消失,后面的平板上就会清晰的留下两道条纹—电子又以粒子的形式通过条纹了!够玄乎的吧?这确确实实就是当时得出来的结论。
一开始实验的时候,电子无论是一次性发射多个还是一个个发射,都在平板上产生许多条痕迹,显示出波的特性。
之后科学家在缝隙旁边安装了一个观测器,想看电子是怎么通过缝隙的。结果这次电子在平板上产生了两条痕迹,显示出粒子的特性。
之后科学家在缝隙旁边安装了一个观测器,想看电子是怎么通过缝隙的。结果这次电子在平板上产生了两条痕迹,显示出粒子的特性。
https://bbs.hupu.com/11571179-5.html
=============
在我们仪器观测前,结果有多条光带。这是因为电子具有波粒二象性,波在双缝处相互干涉的结果。但单电子如果要相互干涉,就肯定要两条缝里都有波发出。所以当实验结果产生的时候,几乎所有科学家都不敢相信自己的眼睛。这意味着一个电子同时出现在左缝与右缝。
于是他们为了搞清楚这个事情,加了一个观测仪器去观测,看看电子到底通过了哪一条缝。实验很成功,他们成功地观测到了电子通过左缝,右缝,左缝......但更神奇的事情发生了。只要一观测,光带就变成了两条,如同电子不在具有波动性,像子弹一样变成了经典粒子。研究人员还是没有发现左缝与右缝同时出现电子。
这个实验做了无数遍,得到的结果都一样。观测了就只有两条光带,不观测就有多条光带。
科学家们开始思考是不是实验装置出了问题,因为观测要用到光,光照一下我们宏观物体肯定不会改变它什么运动状态,但像电子这样的微观粒子,光照一下可能也会对其运动状态发生大的影响,因为光子也是有动量的。
于是就有了单原子双缝干涉实验,对于原子来讲,它比电子质量就大得多了,光照一下对它的影响微乎其微。然并卵啊,得到的实验结果与单电子双缝干涉一样。
科学家们还不死心,因为影响微弱不代表没有影响,这就像蝴蝶效应一样,有时候光子会变成压死骆驼的最后一根稻草。于是科学们想做一种不影响电子,又能观测到电子的装置。结果还真有牛B人搞出来了。因为电子在运动中也会带来周围电场的变化,就是你不用光去照它,它自己也会发光。于是观测仪器大升级,不发光,只接收光。因为技术越来越高,实验也获得了成功。但然并卵啊,得到的实验结果还是一样。。。。
于是科学家们普遍认同了这一观点,在微观粒子被观测前是没有固定的位置的,它是一缕波。当它被观测的那一刹那,它就变成了粒子。。。波粒二象性在这里被重新认知。
对于这种现象,现代物理学的主流解释是哥本哈根诠释。
这个解释比较简单,就是说微观粒子被观测前,其运动状态和位置有无限种可能,但我们观测会使这N多可能性的事件塌缩。微观粒子从波态塌缩成粒子态(吐槽:这尼玛也算解释啊,你不是把实验结果说了一遍么)
然后支持率第二的就是多世界诠释。就是说我们的世界其实不是唯一的,在观测的时候,你就会被分配到其中的一个世界中(如电子从左缝通过),而电子从右缝通过就是另一个平行宇宙,与你互不相干。这种学说因为成功的预测了惠勒延迟选择实验,以及EPR佯谬的结果。所以也非常受欢迎。为什么它还是被哥本哈根诠释击败了而成为万年老二呢?因为物理学是一个基于实验依据的学说。多世界诠释这种不能证明又不能证伪的学说在众多科学家看来没有任何意义。除非能拿出多世界存在的铁证,不然我们只认为这是一种猜测。而多世界诠释的理论认为平行宇宙是相互平行的,互不干扰,自然也就没法证明。。。。所以,万年老二的位置就坐定了。
=====
①单独粒子的干涉现象
1909
年,杰弗里·泰勒爵士设计并且完成了一个很精致的双缝实验。这实验将入射光束的强度大大降低,在任何时间间隔内,平均最多只有一个光子被发射出来。经过很久时间,累积许多光子于摄影胶片后,他发现,仍旧会出现类似的干涉图样。很清楚地,这意味着,虽然每次只有一个光子通过狭缝,这光子可以同时通过两条狭缝,自己与自己互相干涉!类似地,电子、中子、原子、甚至分子,都可以表现出这种奇异的量子行为。
而且,稍微改变双缝实验的设计,在狭缝后面装置探测器,专门探测光子通过的是哪一条狭缝,则干涉图样会完全消失,不再能观察到干涉图样;替代显示出的是两个单缝图样的简单总和。这种反直觉而又容易制成的结果,使得物理学者感到非常困惑不解。
②量子擦除实验和惠勒延迟选择实验
量子擦除实验与延迟选择实验是双缝实验更为进阶的变版,能够演示更多量子力学的特色。
量子擦除实验演示,借着擦除路径信息,可以恢复波动行为所产生的干涉图样。这实验有三个步骤:
照射粒子束于刻有两条狭缝的不透明板,然后确认在探测屏出现了干涉图样。
观察粒子通过的是哪条狭缝,在观察时,必须小心翼翼地不过度搅扰光子的运动,然后,证实显示于探测屏的干涉图样已被消毁。这步骤演示出,干涉图样是因为有可能获得路径信息而被消毁。
通过特别程序,可以将路径信息擦除,但也可重新得到干涉图样。
延迟选择实验演示,在粒子抵达探测屏之后,可以借着擦除或标记路径信息,恢复或摧毁干涉图样。这种时间差距关系,理论上甚至可以拉长至非常长久。假若标记路径信息,则粒子只通过了一条路径;假若擦除路径信息,则粒子同时通过了两条路径。这意味着,观察者现在的行为可以决定过去发生的事,而这一结论是与传统实在观相违背的。
③双源干涉
1967年,傅立诰(R. Pfleegor)与曼德尔(L.
Mandel)完成实验演示,使用两个激光源,可以产生“双源干涉”,假若探测器获得光子是从哪个激光器发射出来的路径信息,则在探测屏不会显示出干涉图样;假若不存在路径信息,则在探测屏会显示出干涉图样。这意味着当探测屏显示出干涉图样时,无法得知光子的发射源是哪个激光器。
(
最关键的是后面这句话,是否把2条激光合成为一体,无区别就是一体,有区别可以区别就是独立的两体)
https://zhidao.baidu.com/question/1993173710407303347.html
------------------------------------------
http://video.tudou.com/v/XMTc4NjEzNjg0NA==.html?fr=rec1
第二个视频
===========
在这个实验中,单电子通过双缝后竟然发生了干涉。在经典力学看来,电子在同一时刻只能通过一条缝,它不可能同时通过两条缝并发生干涉;而根据量子力学,电子的运动状态是以波函数形式存在,电子有可能在同一时刻既通过这条狭缝,又通过那条狭缝,并发生干涉。但是,当科学家试图通过仪器测定电子究竟通过了哪条缝时,永远只会在其中的一处发现电子。两个仪器也不会同时侦测到电子,电子每次只能通过一条狭缝。这看起来好像是测量者的观测行为改变了电子的运动状态,这种反常的现象又作何解释呢,物理学家玻尔提出了著名的“哥本哈根解释”:当人们未观测时,电子在两条缝位置都有存在的概率;但是,一旦被测量了,比如说测得该电子在左缝位置,电子有了准确的位置,它在该点的概率为1,其他点的概率为0。也就是说,该电子的波函数在被测量的瞬间“塌缩”到了该点。
玻尔把观察者及其意识引入了量子力学,使其与微观粒子的运动状态发生关系。但观察者和“塌缩”的解释并不十分清晰和令人信服,也受到了很多科学家的质疑。例如,塌缩是如何发生的,是在一瞬间就发生,还是要等到光子进入人们的眼睛并在视网摸上激起电脉冲信号后才开始。
那么,有没有办法绕过这所谓的“塌缩”和“观测者”,从本应研究客观规律的物理学中剔除观察者的主观成分呢?
埃弗雷特提出了一个大胆的想法:如果波函数没有“塌缩”,则它必定保持线性增加。也就是说,上述实验中电子即使再观测后仍然处在左/右狭缝的叠加状态。埃弗雷特由此进一步提出:人们的世界也是叠加的,当电子穿过双缝后,处于叠加态的不仅仅是电子,还包括整个的世界。也就是说,当电子经过双缝后,出现了两个叠加在一起的世界,在其中的一个世界里电子穿过了左边的狭缝,而在另一个世界里,电子则通过了右边的狭缝。这样,波函数就无需“塌缩”,去随机选择左还是右,因为它表现为两个世界的叠加:生活在一个世界中的人们发现在他们那里电子通过了左边的狭缝,而在另一个世界中,人们观察到的电子则在右边。以“薛定谔的猫”来说,埃弗雷特指出两只猫都是真实的。有一只活猫,有一只死猫,但它们位于不同的世界中。问题并不在于盒子中的发射性原子是否衰变,而在于它既衰变又不衰变。当观测者向盒子里看时,整个世界分裂成它自己的两个版本。这两个版本在其余的各个方面是完全相同的。唯一的区别在于其中一个版本中,原子衰变了,猫死了;而在另一个版本中,原子没有衰变,猫还活着。前述所说的“原子衰变了,猫死了;原子没有衰变,猫还活着”这两个世界将完全相互独立平行地演变下去,就像两个平行的世界一样。量子过程造成了“两个世界”,这就是埃弗雷特前卫的“多世界解释”。
这个解释的优点是:薛定谔方程始终成立,波函数从不塌缩,由此它简化了基本理论。它的问题是:设想过于离奇,付出的代价是这些平行的世界全都是同样真实的。这就难怪有人说:“在科学史上,多世界解释无疑是目前所提出的最大胆、最野心勃勃的理论。”
======
https://bbs.hupu.com/11571179-24.html
Aspect和他的小组发现,在特定的情况下,次原子(亚原子)的粒子们,例如电子,同时向相反方向发射后,在运动时能够彼此互通信息。不管彼此之间的距离多么遥远,不管它们是相隔十尺或十万万里远,它们似乎总是知道相对一方的运动方式,在一方被影响而改变方向时,双方会同时改变方向。这个现象的问题是,它违反了爱因斯坦的理论:没有任何通讯能够超过光速。由于超过了光速就等于是能够打破时间的界线,这个骇人的可能性使一些物理学家试图用复杂的方式解释
Aspect的发现。但是它也激发了一些更有革命性的解释。例如,伦敦大学的物理学家David
Bohm相信Aspect的发现是意味著客观现实并不存在,尽管宇宙看起来具体而坚实,其实宇宙只是一个幻象,一个巨大而细节丰富的全像摄影相片(Hologram)。
====
主要问题不是观察者。人在观察时仍然是干涉图样;高速摄影机观察时是2个独立的缝隙。
关键是是否为统一体。如果双逢属于一个统一体,则双逢会干涉。如果双逢可以区别,则是2个独立缝隙。
一体两面,你看一个人,正面是一个像,背面是一个像。
你去看一个光子,也在于你怎么去看。如果可以区分其行走路径,则会见到粒子性;如果不能区分从哪个缝隙过来,则会见到干涉条纹即波动性。
远远地看一个画片,不能够区分图片的纹理,则会模糊成一片;如果在近处观看,则可以清楚区分图片内容和纹理。
一旦对一个光子进行测试,则解耦。
前一篇:宇宙肥皂泡
后一篇:日本药理小组试验白虎汤

加载中…