加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

伟大的格致学家之 巴丁  布拉顿和肖克利

(2008-07-30 12:48:01)
标签:

杂谈

晶体管(transistor 计:MOS transistor; npn 化:transistor)

也叫三极管
  晶体管(transistor)是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。晶体管作为一种可变开关,基于输入的电压,控制流出的电流,因此晶体管可做为电流的开关,和一般机械开关(如Relay、switch)不同处在于晶体管是利用电讯号来控制,而且开关速度可以非常之快,在实验室中的切换速度可达100GHz以上。

半导体三极管,是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。输入级和输出级都采用晶体管的逻辑电路,叫做晶体管-晶体管逻辑电路,书刊和实用中都简称为TTL电路,它属于半导体集成电路的一种,其中用得最普遍的是TTL与非门。TTL与非门是将若干个晶体管和电阻元件组成的电路系统集中制造在一块很小的硅片上,封装成一个独立的元件。半导体三极管[font color=#000000]是电路中[/font]应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。

半导体三极管主要分为两大类:双极性晶体管(BJT)和场效应晶体管(FET)。晶体管有三个极;双极性晶体管的三个极,分别由N型跟P型组成发射极(Emitter)、基极 (Base) 和集电极(Collector);场效应晶体管的三个极,分别是源极(Source)、栅极(Gate)和漏极(Drain)。晶体管因为有三种极性,所以也有三种的使用方式,分别是发射极接地(又称共射放大、CE组态)、基极接地(又称路最常用的用途应该是属于讯号放大这一方面,其次是阻抗匹配、讯号转换……等,晶体管在电路中是个很重要的组件,许多精密的组件主要都是由晶体管制成的。


三极管的导通三极管处于放大状态还是开关状态要看给三极管基极加的直流偏置,随这个电流变化,三极管工作状态由截止-线性区-饱和状态变化而变,如果三极管Ib(直流偏置点)一定时,三极管工作在线性区,此时Ic电流的变化只随着Ib的交流信号变化,Ib继续升高,三极管进入饱和状态,此时三极管的Ic不再变化,三极管将工作在开关状态。


三极管为开关管使用时工作在饱和状态1,用放大状态1表示不是很科学。
请对照三极管手册的Ib;Ic曲线加以参考我的回答来理解三极管的工作状态,三极管be结和ce结导通三极管才能正常工作。


如果三极管没有加直流偏置时,放大电路时输入的交流正弦信号正半周时,基极对发射极而言是正的,由于发射结加的是反向电压,此时没有基极电流和集电极电流,此时集电极电流变化与基极反相,在输入电压的负半周,发射极电位对于基极电位为正的,此时由于发射极加的是正向电压,才有基极和集电极电流通过,此时集电极电流变化与基极同相,在三极管没有加直流偏置时三极管be结和ce结导通,三极管放大电路将只有半个波输出将产生严重的失真。

晶体管被认为是现代历史中最伟大的发明之一,在重要性方面可以与印刷术汽车电话等发明相提并论。晶体管实际上是所有现代电器的关键活动(active)元件。晶体管在当今社会的重要性,主要是因为晶体管可以使用高度自动化的过程,进行大规模生产的能力,因而可以不可思议地达到极低的单位成本。

虽然数以百万计的单体晶体管还在使用,但是绝大多数的晶体管是和电阻、电容一起被装配在微芯片(芯片)上以制造完整的电路。模拟的或数字的或者这两者被集成在同一块芯片上。设计和开发一个复杂芯片的成本是相当高的,但是当分摊到通常百万个生产单位上,每个芯片的价格就是最小的。一个逻辑门包含20个晶体管,而2005年一个高级的微处理器使用的晶体管数量达2.89亿个。

晶体管的低成本、灵活性和可靠性使得其成为非机械任务的通用器件,例如数字计算。在控制电器和机械方面,晶体管电路也正在取代电机设备,因为它通常是更便宜、更有效地,仅仅使用标准集成电路并编写计算机程序来完成同样的机械任务,使用电子控制,而不是设计一个等效的机械控制。

因为晶体管的低成本和后来的电子计算机、数字化信息的浪潮来到了。由于计算机提供快速的查找、分类和处理数字信息的能力,在信息数字化方面投入了越来越多的精力。今天的许多媒体是通过电子形式发布的,最终通过计算机转化和呈现为模拟形式。受到数字化革命影响的领域包括电视、广播和报纸。

 

【历史】
 

1947年12月,美国贝尔实验室的肖克莱、巴丁和布拉顿组成的研究小组,研制出一种点接触型的锗晶体管。晶体管的问世,是20世纪的一项重大发明,是微电子革命的先声。晶体管出现后,人们就能用一个小巧的、消耗功率低的电子器件,来代替体积大、功率消耗大的电子管了。晶体管的发明又为后来集成电路的降生吹响了号角。


20世纪最初的10年,通信系统已开始应用半导体材料。20世纪上半叶,在无线电爱好者中广泛流行的矿石收音机,就采用矿石这种半导体材料进行检波。半导体的电学特性也在电话系统中得到了应用。

晶体管的发明,最早可以追溯到1929年,当时工程师利莲费尔德就已经取得一种晶体管的专利。但是,限于当时的技术水平,制造这种器件的材料达不到足够的纯度,而使这种晶体管无法制造出来。

由于电子管处理高频信号的效果不理想,人们就设法改进矿石收音机中所用的矿石触须式检波器。在这种检波器里,有一根与矿石(半导体)表面相接触的金属丝(像头发一样细且能形成检波接点),它既能让信号电流沿一个方向流动,又能阻止信号电流朝相反方向流动。在第二次世界大战爆发前夕,贝尔实验室在寻找比早期使用的方铅矿晶体性能更好的检波材料时,发现掺有某种极微量杂质的锗晶体的性能不仅优于矿石晶体,而且在某些方面比电子管整流器还要好。

在第二次世界大战期间,不少实验室在有关硅和锗材料的制造和理论研究方面,也取得了不少成绩,这就为晶体管的发明奠定了基础。

为了克服电子管的局限性,第二次世界大战结束后,贝尔实验室加紧了对固体电子器件的基础研究。肖克莱等人决定集中研究硅、锗等半导体材料,探讨用半导体材料制作放大器件的可能性。

1945年秋天,贝尔实验室成立了以肖克莱为首的半导体研究小组,成员有布拉顿、巴丁等人。布拉顿早在1929年就开始在这个实验室工作,长期从事半导体的研究,积累了丰富的经验。他们经过一系列的实验和观察,逐步认识到半导体中电流放大效应产生的原因。布拉顿发现,在锗片的底面接上电极,在另一面插上细针并通上电流,然后让另一根细针尽量靠近它,并通上微弱的电流,这样就会使原来的电流产生很大的变化。微弱电流少量的变化,会对另外的电流产生很大的影响,这就是“放大”作用

布拉顿等人,还想出有效的办法,来实现这种放大效应。他们在发射极和基极之间输入一个弱信号,在集电极和基极之间的输出端,就放大为一个强信号了。在现代电子产品中,上述晶体三极管的放大效应得到广泛的应用。

巴丁和布拉顿最初制成的固体器件的放大倍数为50左右。不久之后,他们利用两个靠得很近(相距0.05毫米)的触须接点,来代替金箔接点,制造了“点接触型晶体管”。1947年12月,这个世界上最早的实用半导体器件终于问世了,在首次试验时,它能把音频信号放大100倍,它的外形比火柴棍短,但要粗一些。

在为这种器件命名时,布拉顿想到它的电阻变换特性,即它是靠一种从“低电阻输入”到“高电阻输出”的转移电流来工作的,于是取名为trans-resister(转换电阻),后来缩写为transister,中文译名就是晶体管。

由于点接触型晶体管制造工艺复杂,致使许多产品出现故障,它还存在噪声大、在功率大时难于控制、适用范围窄等缺点。为了克服这些缺点,肖克莱提出了用一种"整流结"来代替金属半导体接点的大胆设想。半导体研究小组又提出了这种半导体器件的工作原理。

1950年,第一只“面结型晶体管”问世了,它的性能与肖克莱原来设想的完全一致。今天的晶体管,大部分仍是这种面结型晶体管。

1956年,肖克莱、巴丁、布拉顿三人,因发明晶体管同时荣获诺贝尔物理学奖。

【晶体管的发展历史及其重要里程碑】
 

1947年12月16日:威廉·邵克雷(William Shockley)、约翰·巴顿(John Bardeen)和沃特·布拉顿(Walter Brattain)成功地在贝尔实验室制造出第一个晶体管。

1950年:威廉·邵克雷开发出双极晶体管(Bipolar Junction Transistor),这是现在通行的标准的晶体管。

  1953年:第一个采用晶体管的商业化设备投入市场,即助听器。

  1954年10月18日:第一台晶体管收音机Regency TR1投入市场,仅包含4只锗晶体管。

  1961年4月25日:第一个集成电路专利被授予罗伯特·诺伊斯(Robert Noyce)。最初的晶体管对收音机和电话而言已经足够,但是新的电子设备要求规格更小的晶体管,即集成电路。

  1965年:摩尔定律诞生。当时,戈登·摩尔(Gordon Moore)预测,未来一个芯片上的晶体管数量大约每年翻一倍(10年后修正为每两年),摩尔定律在Electronics Magazine杂志一篇文章中公布。

  1968年7月:罗伯特·诺伊斯和戈登·摩尔从仙童(Fairchild)半导体公司辞职,创立了一个新的企业,即英特尔公司,英文名Intel为“集成电子设备(integrated electronics)”的缩写。

  1969年:英特尔成功开发出第一个PMOS硅栅晶体管技术。这些晶体管继续使用传统的二氧化硅栅介质,但是引入了新的多晶硅栅电极。

  1971年:英特尔发布了其第一个微处理器4004。4004规格为1/8英寸 x 1/16英寸,包含仅2000多个晶体管,采用英特尔10微米PMOS技术生产。

  1978年:英特尔标志性地把英特尔8088微处理器销售给IBM新的个人电脑事业部,武装了IBM新产品IBM PC的中枢大脑。16位8088处理器含有2.9万个晶体管,运行频率为5MHz、8MHz和10MHz。8088的成功推动英特尔进入了财富(Forture) 500强企业排名,《财富(Forture)》杂志将英特尔公司评为“七十大商业奇迹之一(Business Triumphs of the Seventies)”。

  1982年:286微处理器(又称80286)推出,成为英特尔的第一个16位处理器,可运行为英特尔前一代产品所编写的所有软件。286处理器使用了13400个晶体管,运行频率为6MHz、8MHz、10MHz和12.5MHz。

  1985年:英特尔386™微处理器问世,含有27.5万个晶体管,是最初4004晶体管数量的100多倍。386是32位芯片,具备多任务处理能力,即它可在同一时间运行多个程序。

  1993年:英特尔®奔腾®处理器问世,含有3百万个晶体管,采用英特尔0.8微米制程技术生产。

  1999年2月:英特尔发布了奔腾®III处理器。奔腾III是1x1正方形硅,含有950万个晶体管,采用英特尔0.25微米制程技术生产。

  2002年1月:英特尔奔腾4处理器推出,高性能桌面台式电脑由此可实现每秒钟22亿个周期运算。它采用英特尔0.13微米制程技术生产,含有5500万个晶体管。

  2002年8月13日:英特尔透露了90纳米制程技术的若干技术突破,包括高性能、低功耗晶体管,应变硅,高速铜质接头和新型低-k介质材料。这是业内首次在生产中采用应变硅。

  2003年3月12日:针对笔记本的英特尔®迅驰®移动技术平台诞生,包括了英特尔最新的移动处理器“英特尔奔腾M处理器”。该处理器基于全新的移动优化微体系架构,采用英特尔0.13微米制程技术生产,包含7700万个晶体管。

  2005年5月26日:英特尔第一个主流双核处理器“英特尔奔腾D处理器”诞生,含有2.3亿个晶体管,采用英特尔领先的90纳米制程技术生产。

  2006年7月18日:英特尔®安腾®2双核处理器发布,采用世界最复杂的产品设计,含有17.2亿个晶体管。该处理器采用英特尔90纳米制程技术生产。

  2006年7月27日:英特尔®酷睿™2双核处理器诞生。该处理器含有2.9亿多个晶体管,采用英特尔65纳米制程技术在世界最先进的几个实验室生产。

  2006年9月26日:英特尔宣布,超过15种45纳米制程产品正在开发,面向台式机、笔记本和企业级计算市场,研发代码Penryn,是从英特尔®酷睿™微体系架构派生而出。

  2007年1月8日:为扩大四核PC向主流买家的销售,英特尔发布了针对桌面电脑的65纳米制程英特尔®酷睿™2四核处理器和另外两款四核服务器处理器。英特尔®酷睿™2四核处理器含有5.8亿多个晶体管。

  2007年1月29日:英特尔公布采用突破性的晶体管材料即高-k栅介质和金属栅极。英特尔将采用这些材料在公司下一代处理器——英特尔®酷睿™2双核、英特尔®酷睿™2四核处理器以及英特尔®至强®系列多核处理器的数以亿计的45纳米晶体管或微小开关中用来构建绝缘“墙”和开关“门”,研发代码Penryn。采用了这些先进的晶体管,已经生产出了英特尔45纳米微处理器。

【晶体管出现的意义】
 

晶体管的出现,是电子技术之树上绽开的一朵绚丽多彩的奇葩。

电子管相比,晶体管具有诸多优越性:

①晶体管的构件是没有消耗的。无论多么优良的电子管,都将因阴极原子的变化和慢性漏气而逐渐劣化。由于技术上的原因,晶体管制作之初也存在同样的问题。随着材料制作上的进步以及多方面的改善,晶体管的寿命一般比电子管长 100到1000倍,称得起永久性器件的美名。

②晶体管消耗电能极少,仅为电子管的十分之一或几十分之一。它不像电子管那样需要加热灯丝以产生自由电子。一台晶体管收音机只要几节干电池就可以半年一年地听下去,这对电子管收音机来说,是难以做到的。

③晶体管不需预热,一开机就工作。例如,晶体管收音机一开就响,晶体管电视机一开就很快出现画面。电子管设备就做不到这一点。开机后,非得等一会儿才听得到声音,看得到画面。显然,在军事、测量、记录等方面,晶体管是非常有优势的。

④晶体管结实可靠,比电子管可靠 100倍,耐冲击、耐振动,这都是电子管所无法比拟的。另外,晶体管的体积只有电子管的十分之一到百分之一,放热很少,可用于设计小型、复杂、可靠的电路。晶体管的制造工艺虽然精密,但工序简便,有利于提高元器件的安装密度。

正因为晶体管的性能如此优越,晶体管诞生之后,便被广泛地应用于工农业生产、国防建设以及人们日常生活中。1953年,首批电池式的晶体管收音机一投放市场,就受到人们的热烈欢迎,人们争相购买这种收音机。接着,各厂家之间又展开了制造短波晶体管的竞赛。此后不久,不需要交流电源的袖珍“晶体管收音机”开始在世界各地出售,又引起了一个新的消费热潮。

由于硅晶体管适合高温工作,可以抵抗大气影响,在电子工业领域是最受欢迎的产品之一。从1967年以来,电子测量装置或者电视摄像机如果不是“晶体管化”的,那么就别想卖出去一件。轻便收发机,甚至车载的大型发射机也都晶体管化了。

另外,晶体管还特别适合用作开关。它也是第二代计算机的基本元件。人们还常常用硅晶体管制造红外探测器。就连可将太阳能转变为电能的电池——太阳能电池也都能用晶体管制造。这种电池是遨游于太空的人造卫星的必不可少的电源。晶体管这种小型简便的半导体元件还为缝纫机、电钻和荧光灯开拓了电子控制的途径。

从1950年至1960年的十年间,世界主要工业国家投入了巨额资金,用于研究、开发与生产晶体管和半导体器件。例如,纯净的锗或硅半导体,导电性能很差,但加入少量其它元素(称为杂质)后,导电性能会提高许多。但是要想把定量杂质正确地熔入锗或硅中,必须在一定的温度下,通过加热等方法才能实现。而一旦温度高于摄氏75度,晶体管就开始失效。为了攻克这一技术难关,美国政府在工业界投资数百万美元,

以开展这项新技术的研制工作。在这样雄厚的财政资助下,没过多久,人们便掌握了这种高熔点材料的提纯、熔炼和扩散的技术。特别是晶体管在军事计划和宇宙航行中的威力日益显露出来以后,为争夺电子领域的优势地位,世界各国展开了激烈的竞争。为实现电子设备的小型化,人们不惜成本,纷纷给电子工业以巨大的财政资助。

自从1904年弗莱明发明真空二极管,1906年德福雷斯特发明真空三极管以来,电子学作为一门新兴学科迅速发展起来。但是电子学真正突飞猛进的进步,还应该是从晶体管发明以后开始的。尤其是PN结型晶体管的出现,开辟了电子器件的新纪元,引起了一场电子技术的革命。在短短十余年的时间里,新兴的晶体管工业以不可战胜的雄心和年轻人那样无所顾忌的气势,迅速取代了电子管工业通过多年奋斗才取得的地位,一跃成为电子技术领域的排头兵。

【晶体管分类】
 

按半导体材料和极性分类
按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管。按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。
按结构及制造工艺分类
晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。
按电流容量分类
晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管
按工作频率分类
晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。
按封装结构分类
晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。其封装外形多种多样。
按功能和用途分类
晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。

※ 电力晶体管

电力晶体管按英文Giant Transistor直译为巨型晶体管,是一种耐高电压、大电流的双极结型晶体管(Bipolar Junction Transistor—BJT),所以有时也称为Power BJT;其特性有:耐压高,电流大,开关特性好,但驱动电路复杂,驱动功率大;GTR和普通双极结型晶体管的工作原理是一样的。

※ 光晶体管

光晶体管(phototransistor)由双极型晶体管或场效应晶体管等三端器件构成的光电器件。光在这类器件的有源区内被吸收,产生光生载流子,通过内部电放大机构,产生光电流增益。光晶体管三端工作,故容易实现电控或电同步。光晶体管所用材料通常是砷化镓(CaAs),主要分为双极型光晶体管、场效应光晶体管及其相关器件。双极型光晶体管通常增益很高,但速度不太快,对于GaAs-GaAlAs,放大系数可大于1000,响应时间大于纳秒,常用于光探测器,也可用于光放大。场效应光晶体管响应速度快(约为50皮秒),但缺点是光敏面积小,增益小(放大系数可大于10),常用作极高速光探测器。与此相关还有许多其他平面型光电器件,其特点均是速度快(响应时间几十皮秒)、适于集成。这类器件可望在光电集成中得到应用。

※ 双极晶体管

双极晶体管(bipolar transistor)指在音频电路中使用得非常普遍的一种晶体管。双极则源于电流系在两种半导体材料中流过的关系。双极晶体管根据工作电压的极性而可分为NPN型或PNP型。

※ 双极结型晶体管 双极结型晶体管(Bipolar Junction Transistor—BJT)又称为半导体三极管,它是通过一定的工艺将两个PN结结合在一起的器件,有PNP和NPN两种组合结构;外部引出三个极:集电极,发射极和基极,集电极从集电区引出,发射极从发射区引出,基极从基区引出(基区在中间);BJT有放大作用,重要依靠它的发射极电流能够通过基区传输到达集电区而实现的,为了保证这一传输过程,一方面要满足内部条件,即要求发射区杂质浓度要远大于基区杂质浓度,同时基区厚度要很小,另一方面要满足外部条件,即发射结要正向偏置(加正向电压)、集电结要反偏置;BJT种类很多,按照频率分,有高频管,低频管,按照功率分,有小、中、大功率管,按照半导体材料分,有硅管和锗管等;其构成的放大电路形式有:共发射极、共基极和共集电极放大电路。

※ 场效应晶体管

场效应晶体管(field effect transistor)利用场效应原理工作的晶体管。英文简称FET。场效应就是改变外加垂直于半导体表面上电场的方向或大小,以控制半导体导电层(沟道)中多数载流子的密度或类型。它是由电压调制沟道中的电流,其工作电流是由半导体中的多数载流子输运。这类只有一种极性载流子参加导电的晶体管又称单极型晶体管。与双极型晶体管相比,场效应晶体管具有输入阻抗高、噪声小、极限频率高、功耗小,制造工艺简单、温度特性好等特点,广泛应用于各种放大电路、数字电路和微波电路等。以硅材料为基础的金属氧化物半导体场效应管(MOSFET)和以砷化镓材料为基础的肖特基势垒栅场效应管(MESFET)是两种最重要的场效应晶体管,分别为MOS大规模集成电路和MES超高速集成电路的基础器件。

※ 静电感应晶体管
静电感应晶体管SIT(Static Induction Transistor)诞生于1970年,实际上是一种结型场效应晶体管。将用于信息处理的小功率SIT器件的横向导电结构改为垂直导电结构,即可制成大功率的SIT器件。SIT是一种多子导电的器件,其工作频率与电力MOSFET相当,甚至超过电力MOSFET,而功率容量也比电力MOSFET大,因而适用于高频大功率场合,目前已在雷达通信设备、超声波功率放大、脉冲功率放大和高频感应加热等某些专业领域获得了较多的应用。

但是SIT在栅极不加任何信号时是导通的,栅极加负偏压时关断,这被称为正常导通型器件,使用不太方便。此外,SIT通态电阻较大,使得通态损耗也大,因而SIT还未在大多数电力电子设备中得到广泛应用。

※ 单电子晶体管
用一个或者少量电子就能记录信号的晶体管。随着半导体刻蚀技术和工艺的发展,大规模集成电路的集成度越来越高。以动态随机存储器(DRAM)为例,它的集成度差不多以每两年增加四倍的速度发展,预计单电子晶体管将是最终的目标。目前一般的存储器每个存储元包含了20万个电子,而单电子晶体管每个存储元只包含了一个或少量电子,因此它将大大降低功耗,提高集成电路的集成度。1989年斯各特(J.H. F.Scott-Thomas)等人在实验上发现了库仑阻塞现象。在调制掺杂异质结界面形成的二维电子气上面,制作一个面积很小的金属电极,使得在二维电子气中形成一个量子点,它只能容纳少量的电子,也就是它的电容很小,小于一个?F (10~15法拉)。当外加电压时,如果电压变化引起量子点中电荷变化量不到一个电子的电荷,则将没有电流通过。直到电压增大到能引起一个电子电荷的变化时,才有电流通过。因此电流-电压关系不是通常的直线关系,而是台阶形的。这个实验在历史上第一次实现了用人工控制一个电子的运动,为制造单电子晶体管提供了实验依据。为了提高单电子晶体管的工作温度,必须使量子点的尺寸小于10纳米,目前世界各实验室都在想各种办法解决这个问题。有些实验室宣称已制出室温下工作的单电子晶体管,观察到由电子输运形成的台阶型电流——电压曲线,但离实用还有相当的距离。

※ 绝缘栅双极晶体管
绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)综合了电力晶体管(Giant Transistor—GTR)和电力场效应晶体管(Power MOSFET)的优点,具有良好的特性,应用领域很广泛;IGBT也是三端器件:栅极,集电极和发射极。

 

自從有人類以來,已經過了上百萬年的歲月。社會的進步可以用當時人類使用的器物來代表,從遠古的石器時代、到銅器,再進步到鐵器時代。現今,以矽為原料的電子元件產值,則超過了以鋼為原料的產值,人類的歷史因而正式進入了一個新的時代,也就是矽的時代。矽所代表的正是半導體元件,包括記憶元件、微處理機、邏輯元件、光電元件與偵測器等等在內,舉凡電視、電話、電腦、電冰箱、汽車,這些半導體元件無時無刻都在為我們服務。

 

矽是地殼中最常見的元素,許多石頭的主要成分都是二氧化矽,然而,經過數百道製程做出的積體電路,其價值可達上萬美金;把石頭變成矽晶片的過程是一項點石成金的成就,也是近代科學的奇蹟!

 

在日本,有人把半導體比喻為工業社會的稻米,是近代社會一日不可或缺的。在國防上,惟有紮實的電子工業基礎,才有強大的國防能力,1991年的波斯灣戰爭中,美國已經把新一代電子武器發揮得淋漓盡致。從1970年代以來,美國與日本間發生多次貿易摩擦,但最後在許多項目美國都妥協了,但是為了半導體,雙方均不肯輕易讓步,最後兩國政府慎重其事地簽訂了協議,足證對此事的重視程度,這是因為半導體工業發展的成敗,關係著國家的命脈,不可不慎。在台灣,半導體工業是新竹科學園區的主要支柱,半導體公司也是最賺錢的企業,台灣如果要成為明日的科技矽島,半導體工業是我們必經的途徑。
 

 在二十世紀的近代科學,特別是量子力學發展知道金屬材料擁有良好的導電與導熱特性,而陶瓷材料則否,性質出來之前,人們對於四周物體的認識仍然屬於較為巨觀的瞭解,那時已經介於這兩者之間的,就是半導體材料。

 

英國科學家法拉第(Michael Faraday, 1791~1867),在電磁學方面擁有許多貢獻,但較不為人所知的,則是他在1833年發現的其中一種半導體材料:硫化銀,因為它的電阻隨著溫度上升而降低,當時只覺得這件事有些奇特,並沒有激起太大的火花;然而,今天我們已經知道,隨著溫度的提升,晶格震動越厲害,使得電阻增加,但對半導體而言,溫度上升使自由載子的濃度增加,反而有助於導電,這也是半導體一個非常重要的物理性質。

 

1874年,德國的布勞恩(Ferdinand Braun,1850~1918),注意到硫化物的電導率與所加電壓的方向有關,這就是半導體的整流作用。但直到1906年,美國電機發明家匹卡(G. W. Pickard,1877~1956),才發明了第一個固態電子元件:無線電波偵測器(cat’s whisker),它使用金屬與矽或硫化鉛相接觸所產生的整流功能,來偵測無線電波。在整流理論方面,德國的蕭特基(Walter Schottky,1886~1976)在1939年,於「德國物理學報」發表了一篇有關整流理論的重要論文,做了許多推論,他認為金屬與半導體間有能障(potential barrier)的存在,其主要貢獻就在於精確計算出這個能障的形狀與寬度。至於現在為大家所接受的整流理論,則是1942年,由索末菲(Arnold Sommerfeld, 1868~1951)的學生貝特(Hans Bethe,1906~    )所發展出來,他提出的就是熱電子發射理論(thermionic emission),這些具有較高能量的電子,可越過能障到達另一邊,其理論也與實驗結果較為符合。

 

在半導體領域中,與整流理論同等重要的,就是能帶理論。布洛赫(Felix Bloch,1905~1983)在這方面做出了重要的貢獻,其定理是將電子波函數加上了週期性的項,首開能帶理論的先河。另一方面,德國人佩爾斯(Rudolf Peierls, 1907~    ) 於1929年,則指出一個幾乎完全填滿的能帶,其電特性可以用一些帶正電的電荷來解釋,這就是電洞概念的濫觴;他後來提出的微擾理論,解釋了能隙(Energy gap)存在。
 

早在1930與1940年代,使用半導體製作固態放大器的想法就持續不絕;第一個有實驗結果的放大器是1938年,由波歐(Robert Pohl, 1884~1976)與赫希(Rudolf Hilsch)所做的,使用的是溴化鉀晶體與鎢絲做成的閘極,儘管其操作頻率只有一赫茲,並無實際用途,卻證明了類似真空管的固態三端子元件的實用性。

 

二次大戰後,美國的貝爾實驗室(Bell Lab),決定要進行一個半導體方面的計畫,目標自然是想做出固態放大器,它們在1945年7月,成立了固態物理的研究部門,經理正是蕭克萊(William Shockley, 1910~1989)與摩根(Stanley Morgan)。由於使用場效應(field effect)來改變電導的許多實驗都失敗了,巴丁(John Bardeen,1908~1991)推定是因為半導體具有表面態(surface state)的關係,為了避開表面態的問題,1947年11月17日,巴丁與布萊登(Walter Brattain 1902~1987)在矽表面滴上水滴,用塗了蠟的鎢絲與矽接觸,再加上一伏特的電壓,發現流經接點的電流增加了!但若想得到足夠的功率放大,相鄰兩接觸點的距離要接近到千分之二英吋以下。12月16日,布萊登用一塊三角形塑膠,在塑膠角上貼上金箔,然後用刀片切開一條細縫,形成了兩個距離很近的電極,其中,加正電壓的稱為射極 (emitter),負電壓的稱為集極 (collector),塑膠下方接觸的鍺晶體就是基極 (base),構成第一個點接觸電晶體 (point contact transistor),1947年12月23日,他們更進一步使用點接觸電晶體製作出一個語音放大器,該日因而成為電晶體正式發明的重大日子。

 

另一方面,就在點接觸電晶體發明整整一個月後,蕭克萊想到使用p-n接面來製作接面電晶體 (junction transistor) 的方法,在蕭克萊的構想中,使用半導體兩邊的n型層來取代點接觸電晶體的金屬針,藉由調節中間p型層的電壓,就能調控電子或電洞的流動,這是一種進步很多的電晶體,也稱為雙極型電晶體 (bipolar transistor),但以當時的技術,還無法實際製作出來。

 

電晶體的確是由於科學發明而創造出來的一個新元件,但是工業界在1950年代為了生產電晶體,卻碰到許多困難。1951年,西方電器公司(Western Electric)開始生產商用的鍺接點電晶體,1952年4月,西方電器、雷神(Raytheon)、美國無線電(RCA) 與奇異(GE)等公司,則生產出商用的雙極型電晶體。但直到1954年5月,第一顆以矽做成的電晶體才由美國德州儀器公司(Texas Instruments)開發成功;約在同時,利用氣體擴散來把雜質摻入半導體的技術也由貝爾實驗室與奇異公司研發出來;在1957年底,各界已製造出六百種以上不同形式的電晶體,使用於包括無線電、收音機、電子計算機甚至助聽器等等電子產品。

 

早期製造出來的電晶體均屬於高台式的結構。1958年,快捷半導體公司 (Fairchild Semiconductor)發展出平面工藝技術(planar technology),藉著氧化、黃光微影、蝕刻、金屬蒸鍍等技巧,可以很容易地在矽晶片的同一面製作半導體元件。1960年,磊晶(epitaxy)技術也由貝爾實驗室發展出來了。至此,半導體工業獲得了可以批次(batch)生產的能力,終於站穩腳步,開始快速成長。
 

積體電路就是把許多分立元件製作在同一個半導體晶片上所形成的電路,早在1952年,英國的杜默 (Geoffrey W. A. Dummer) 就提出積體電路的構想。1958年9月12日,德州儀器公司(Texas Instruments)的基爾比 (Jack Kilby, 1923~    ),細心地切了一塊鍺作為電阻,再用一塊pn接面做為電容,製造出一個震盪器的電路,並在1964年獲得專利,首度證明了可以在同一塊半導體晶片上能包含不同的元件。1964年,快捷半導體(Fairchild Semiconductor)的諾宜斯(Robert Noyce,1927~1990),則使用平面工藝方法,即藉著蒸鍍金屬、微影、蝕刻等方式,解決了積體電路中,不同元件間導線連結的問題。

 

積體電路的第一個商品是助聽器,發表於1963年12月,當時用的仍是雙極型電晶體;1970年,通用微電子(General Microelectronics)與通用儀器公司 (General Instruments),解決了矽與二氧化矽界面間大量表面態的問題,開發出金氧半電晶體 (metal-oxide-semiconductor, MOS);因為金氧半電晶體比起雙極型電晶體,功率較低、集積度高,製程也比較簡單,因而成為後來大型積體電路的基本元件。

 

60年代發展出來的平面工藝,可以把越來越多的金氧半元件放在一塊矽晶片上,從1960年的不到十個元件,倍數成長到1980年的十萬個,以及1990年約一千萬個,這個每年加倍的現象稱為莫爾定律 (Moore’s law),是莫爾(Gordon Moore)在1964年的一次演講中提出的,後來竟成了事實。
 

在1970年代,決定半導體工業發展方向的,有兩個最重要的因素,那就是半導體記憶體 (semiconductor memory) 與微處理機 (micro processor)。在微處理機方面,1968年,諾宜斯和莫爾成立了英代爾 (Intel) 公司,不久,葛洛夫 (Andrew Grove) 也加入了,1969年,一個日本計算機公司比吉康 (Busicom) 和英代爾接觸,希望英代爾生產一系列計算機晶片,但當時任職於英代爾的霍夫 (Macian E. Hoff) 卻設計出一個單一可程式化晶片,1971年11月15日,世界上第一個微處理器4004誕生了,它包括一個四位元的平行加法器、十六個四位元的暫存器、一個儲存器 (accumulator) 與一個下推堆疊 (push-down stack),共計約二千三百個電晶體;4004與其他唯讀記憶體、移位暫存器與隨機存取記憶體,結合成MCS-4微電腦系統;從此之後,各種集積度更高、功能更強的微處理器開始快速發展,對電子業產生巨大影響。三十年後的今天,英代爾的Pentium III已經包含了一千萬個以上的電晶體。

 

毫無疑問的,記憶體晶片與微處理器同等的重要,1965年,快捷公司的施密特 (J. D. Schmidt) 使用金氧半技術做成實驗性的隨機存取記憶體。1969年,英代爾公司推出第一個商業性產品,這是一個使用矽閘極、p型通道的256位元隨機存取記憶體。記憶體發展過程中最重要的一步,就是1969年,IBM的迪納 (R. H. Dennard) 發明了只需一個電晶體和一個電容器,就可以儲存一個位元的記憶單元;由於結構簡單,密度又高,現今半導體製程的發展常以動態隨機存取記憶體的容量為指標。大致而言,1970年就有1K的產品;1974年進步到4K (閘極線寬十微米);1976年16K (五微米);1979年64K (三微米);1983年256K (一點五微米);1986年1M (一點二微米);1989年4M (零點八微米);1992年16M (零點五微米);1995年64M (零點三五微米);1998年到256M (零點二五微米),大約每三年進步一個世代,2001年就邁入十億位元大關。

 

根據國際半導體科技進程 (International Technology Roadmap for Semiconductor) 的推估,西元2014年,最小線寬可達0.035微米,記憶體容量更高達兩億五千六百萬位元,儘管新製程、新技術的開發越形困難,但半導體業在未來十五年內,相信仍會迅速的發展下去。
 

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有