[转载]一位数学家推荐的数学书
(2010-04-05 16:16:24)
标签:
转载 |
分类: 数学 |
原文地址:一位数学家推荐的数学书作者:奈待奈爱
我列这些书的理由主要有三个:一是这些书基本上都在我的专业方向或兴趣范围之内,我知道或我认为它们比较好,有的甚至是极好,二是在其它书籍的参考文献中它们基本上是经常出现的,三是部分书在国内很多地方都不好找。这里有些书字体可能不是很好看,但内容肯定是非常好的。另外,所列书目的版次也可能不完全是最新的。
打★号的书重点推荐,其中包括以下著名作者的全部所列书目:
L. V. Ahlfors, W. Rudin, J. W. Milnor, K. Kodaira, E. M. Stein, R. C. Gunning
(可惜Ahlfors的《复分析》、Rudin的《数学分析原理》、《实分析与复分析》、《泛函分析》被机械工业出版社抢了先,Ahlfors的Lectures on quasiconformal mappings新版去年又被美国数学会出了,否则我会强烈推荐)
1. N. Steenrod, The topology of fibre bundles, Princeton university press, 1974 (纤维丛的经典著作)
2. ★L. Hörmander, An introduction to complex analysis in several variables, third edition (revised), Elsevier science publishers B. V., 1990(经典的研究生多复变教材)
3. H. Weyl, The concept of a Riemann surface, third edition, Addison-Wesley publishing company, Inc., 1964. (Weyl的名著,最早讲黎曼面的著作)
4. ★C. L. Siegel, Topics in complex function theory, vol.1-3, John Wiley & Sons, 1988 (函数论高级教材)
5. S. Eilenberg, N. Steenrod, Foundations of algebraic topology, Princeton university press, 1952(代数拓扑经典著作,主要讲同调论的公理化)
6. ★J. R. Munkres, Elements of algebraic topology, Addison-Wesley publishing company, 1984(极好的研究生代数拓扑教材)
7. A. Dold, Lectures on algebraic topology, second edition, Springer-Verlag, 1980 (很好的研究生代数拓扑教材)
8. ★S. Kobayashi, K. Nomizu, Foundations of differential geometry, vol.1-2, John Wiley & Sons, 1996 (研究生微分几何经典教材)
9. W. Barth, K. Hulek, C. Peters, A. Van de ven, Compact complex surfaces, second enlarged edition, Springer, 2004 (复几何经典著作)
10. ★J. W. Milnor & J. D. Stasheff, Characteristic classes, Princeton university press, 1974 (Milnor经典著作,示性类的极好教材)
11. K. Kendig, Elementary algebraic geometry, GTM 44, Spinger-Verlag, 1977 (很好的代数几何教材)
12. ★L. V. Ahlfors, L. Sario, Riemann surfaces, Princeton university press, 1960 (黎曼面的经典著作)
13. ★K. Kodaira, Complex manifolds and deformation of complex structures, Springer-Verlag, 1986(关于复流形的形变理论的标准著作,作者小平邦彦是Fields奖、Wolf奖双奖得主)
14. ★S. G. Krantz, Function theory of several complex variables, second edition, Wadsworth, Inc., 1992 (经典的研究生多复变教材)
15. K. Fritzsche, H. Grauert, From holomorphic functions to complex manifolds, GTM 213, Springer, 2002(很好的研究生多复分析教材)
16. ★W. Rudin, Function theory in the unit ball of Cn, Springer-Verlag, 1980 (极好的研究生多复变教材)
17. ★P. L. Duren, Univalent functions, Springer-Verlag, 1983 (单叶函数的经典教材)
18. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Inc., 1962 (很好的研究生解析函数论教材)
19. ★E. M. Stein, Singular integrals and differentiability properties of functions, Princeton university press, 1970 (Stein的经典著作)
20. G. B. Folland, Introduction to partial differential equations, second edition, Princeton university press, 1995 (研究生偏微分方程标准教材)
21. ★H. Weyl, The classical groups, Princeton university press, 1997(Weyl的名著)
22. ★J. G. Semple, L. Roth, Introduction to algebraic geometry, Clarendon press, Oxford, 1986 (很好的代数几何教材)
23. S. Iitaka, Algebraic geometry, GTM 76, Springer-Verlag, 1982(很好的代数几何教材)
24. ★E. Arbarello, M. Cornalba, P. Griffiths, J. Harris, Geometry of algebraic curves, vol.1-2, Springer, Berlin, 1985 (极好的代数曲线著作,第二卷国内尚未见过,这套书最新版将在今年四月或五月出)
25. ★R. C. Gunning, Introduction to holomorphic functions of several variables, vol.1-3, Wadsworth Inc., 1990 (极好的研究生多复变教材)
26. ★J. W. Vick, Homology theory, second edition, GTM 145, Springer, 1994(标准的研究生同调论教材)
27. ★Kehe Zhu, An introduction to operator algebras, CRC press, 1993 (极好的研究生算子论教材)
28. Kehe Zhu, Operator theory in function spaces, Marcel Dekker, Inc., 1990 (很好的研究生算子论教材)
29. I. M. Singer, J. A. Thorpe, Lecture notes on elementary topology and geometry, Springer-Verlag, 1967(极好的高年级本科生教材,拓扑与几何有机结合)
30. S. Lang, Introduction to algebraic geometry, John Wiley & Sons, 1964 (标准的代数几何教材)
31. ★D. Mumford, Algebraic geometry I: complex projective varieties, Springer, 1995(复代数几何的经典著作)
32. ★Shiing-shen Chern, Complex manifolds without potential theory, second edition, Springer-Verlag, 1979(陈省身的名著,复流形的经典)
33. ★C. Carathéodory, The theory of functions of a complex variable, vol.1-2, second English edition, Chelsea publishing company, 1954(很好的本科生复变函数教材,写法极为与众不同)
34. ★S. G. Krantz, H. R. Parks, A primer of real analytic functions, second edition, Birkhäuser, 2002(难得的一本实解析函数著作)
35. S. G. Krantz, H. R. Parks, The implicit function theorem: history, theory, and applications, Birkhäuser, 2002(很好的数学分析参考书)
36. P. Shanahan, The Atiyah-Singer index theorem, Springer-Verlag, 1978(指标定理的标准著作)
37. ★C. Chley, Theory of Lie groups, Princeton university press, 1999(李群经典著作)
38. R. J. Walker, Algebraic curves, Springer-Verlag, 1978(很好的代数曲线引论,使用初等方法, 通俗易懂)
39. ★R. C. Gunning, Lectures on Riemann surfaces, Princeton university press, 1966(研究生黎曼面经典教材)
40. ★R. C. Gunning, Lectures on vector bundles over Riemann surfaces, Princeton university press, 1967(黎曼面上向量丛的经典教材)
41. ★R. Narasimhan, Analysis on real and complex manifolds, Elsevier science publishers B. V., 1985(实流形和复流形的经典教材)
42. ★J. W. Milnor, Topology from the differentiable viewpoint, revised edition, Princeton university press, 1997(很薄但极为经典的微分拓扑著作)
43. W. S. Massey, A basic course in algebraic topology, Springer-Verlag, 1991(高年级本科生和研究生的标准代数拓扑教材)
44. F. H. Croom, Basic concepts of algebraic topology, Springer-Verlag, 1978(很好的高年级本科生和研究生代数拓扑教材)
45. J. F. Adams, Lectures on Lie groups, the university of Chicago press, 1982(李群经典教材和参考书)
46. ★S. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, 1972(微分几何经典著作)
47. ★G. de Rham, Differentiable manifolds, Springer-Verlag, 1984(微分流形经典著作,de Rham上同调的权威参考书,英文版由陈省身作序)
48. ★L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill book company, 1973(Ahlfors的名著,研究生复分析的经典教材,作者为首届Fields奖得主)
49. W. Fulton, Algebraic curves, Addison-Wesley publishing company, Inc., 1989(用代数方法讲代数曲线的很好的著作)
50. ★G. Springer, Introduction to Riemann surfaces, Addison-Wesley publishing company, 1957(黎曼面经典教材)
51. ★A. W. Knapp, Lie groups beyond an introduction, Birkhäuser, 1996(李群、李代数及其表示理论的高级教材和参考书)
52. ★J. W. Milnor, Morse theory, Princeton university press, 1963(莫尔斯理论的标准著作)
53. G. E. Bredon, Topology and geometry, Springer-Verlag, 1993(很好的研究生代数拓扑教材)
54. ★P. R. Halmos, A Hilbert space problems book(这本据说以前出过,建议再出)
55. ★J. B. Garnett, Bounded analytic functions, Academic press, 1981(研究生函数论高级教材,非常经典)
56. R. M. Range, Holomorphic functions and integral representations in several complex variables, GTM 108, Springer-Verlag, 1986(这书好象出过,建议再出)
57. ★M. Spivak, A Comprehensive Introduction to Differential Geometry, vol.1-5, third edition, Publish or Perish, Inc., 1999(非常全面的微分几何经典著作)
58. D. Mumford, The red book of varieties and schemes, second edition (expanded), Springer, 1999(很好的研究生代数几何入门教材)
59. P. L. Duren, The theory of Hp spaces, Academic press, 1970(解析函数论方面的经典著作)
60. ★R. Courant, D. Hilbert, Methods of mathematical physics, Interscience publishers, 1989(偏微分方程经典著作)
61. R. Narasimhan, Compact Riemann surfaces, Birkhäuser, 1992(很好的紧黎曼面著作)
62. ★M. J. Greenberg, J. R. Harper, Algebraic topology: a first course, Benjamin/Cummings Pub. Co., 1981(很好的研究生代数拓扑教材)
63. P. R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, second edition, Chelsea Publishing Company, 1998(希尔伯特空间的经典著作)
64. S. Bochner, W. T. Martin, Several complex variables, Princeton university press, 1948.(多复变教材)
打★号的书重点推荐,其中包括以下著名作者的全部所列书目:
L. V. Ahlfors, W. Rudin, J. W. Milnor, K. Kodaira, E. M. Stein, R. C. Gunning
(可惜Ahlfors的《复分析》、Rudin的《数学分析原理》、《实分析与复分析》、《泛函分析》被机械工业出版社抢了先,Ahlfors的Lectures on quasiconformal mappings新版去年又被美国数学会出了,否则我会强烈推荐)
1. N. Steenrod, The topology of fibre bundles, Princeton university press, 1974 (纤维丛的经典著作)
2. ★L. Hörmander, An introduction to complex analysis in several variables, third edition (revised), Elsevier science publishers B. V., 1990(经典的研究生多复变教材)
3. H. Weyl, The concept of a Riemann surface, third edition, Addison-Wesley publishing company, Inc., 1964. (Weyl的名著,最早讲黎曼面的著作)
4. ★C. L. Siegel, Topics in complex function theory, vol.1-3, John Wiley & Sons, 1988 (函数论高级教材)
5. S. Eilenberg, N. Steenrod, Foundations of algebraic topology, Princeton university press, 1952(代数拓扑经典著作,主要讲同调论的公理化)
6. ★J. R. Munkres, Elements of algebraic topology, Addison-Wesley publishing company, 1984(极好的研究生代数拓扑教材)
7. A. Dold, Lectures on algebraic topology, second edition, Springer-Verlag, 1980 (很好的研究生代数拓扑教材)
8. ★S. Kobayashi, K. Nomizu, Foundations of differential geometry, vol.1-2, John Wiley & Sons, 1996 (研究生微分几何经典教材)
9. W. Barth, K. Hulek, C. Peters, A. Van de ven, Compact complex surfaces, second enlarged edition, Springer, 2004 (复几何经典著作)
10. ★J. W. Milnor & J. D. Stasheff, Characteristic classes, Princeton university press, 1974 (Milnor经典著作,示性类的极好教材)
11. K. Kendig, Elementary algebraic geometry, GTM 44, Spinger-Verlag, 1977 (很好的代数几何教材)
12. ★L. V. Ahlfors, L. Sario, Riemann surfaces, Princeton university press, 1960 (黎曼面的经典著作)
13. ★K. Kodaira, Complex manifolds and deformation of complex structures, Springer-Verlag, 1986(关于复流形的形变理论的标准著作,作者小平邦彦是Fields奖、Wolf奖双奖得主)
14. ★S. G. Krantz, Function theory of several complex variables, second edition, Wadsworth, Inc., 1992 (经典的研究生多复变教材)
15. K. Fritzsche, H. Grauert, From holomorphic functions to complex manifolds, GTM 213, Springer, 2002(很好的研究生多复分析教材)
16. ★W. Rudin, Function theory in the unit ball of Cn, Springer-Verlag, 1980 (极好的研究生多复变教材)
17. ★P. L. Duren, Univalent functions, Springer-Verlag, 1983 (单叶函数的经典教材)
18. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Inc., 1962 (很好的研究生解析函数论教材)
19. ★E. M. Stein, Singular integrals and differentiability properties of functions, Princeton university press, 1970 (Stein的经典著作)
20. G. B. Folland, Introduction to partial differential equations, second edition, Princeton university press, 1995 (研究生偏微分方程标准教材)
21. ★H. Weyl, The classical groups, Princeton university press, 1997(Weyl的名著)
22. ★J. G. Semple, L. Roth, Introduction to algebraic geometry, Clarendon press, Oxford, 1986 (很好的代数几何教材)
23. S. Iitaka, Algebraic geometry, GTM 76, Springer-Verlag, 1982(很好的代数几何教材)
24. ★E. Arbarello, M. Cornalba, P. Griffiths, J. Harris, Geometry of algebraic curves, vol.1-2, Springer, Berlin, 1985 (极好的代数曲线著作,第二卷国内尚未见过,这套书最新版将在今年四月或五月出)
25. ★R. C. Gunning, Introduction to holomorphic functions of several variables, vol.1-3, Wadsworth Inc., 1990 (极好的研究生多复变教材)
26. ★J. W. Vick, Homology theory, second edition, GTM 145, Springer, 1994(标准的研究生同调论教材)
27. ★Kehe Zhu, An introduction to operator algebras, CRC press, 1993 (极好的研究生算子论教材)
28. Kehe Zhu, Operator theory in function spaces, Marcel Dekker, Inc., 1990 (很好的研究生算子论教材)
29. I. M. Singer, J. A. Thorpe, Lecture notes on elementary topology and geometry, Springer-Verlag, 1967(极好的高年级本科生教材,拓扑与几何有机结合)
30. S. Lang, Introduction to algebraic geometry, John Wiley & Sons, 1964 (标准的代数几何教材)
31. ★D. Mumford, Algebraic geometry I: complex projective varieties, Springer, 1995(复代数几何的经典著作)
32. ★Shiing-shen Chern, Complex manifolds without potential theory, second edition, Springer-Verlag, 1979(陈省身的名著,复流形的经典)
33. ★C. Carathéodory, The theory of functions of a complex variable, vol.1-2, second English edition, Chelsea publishing company, 1954(很好的本科生复变函数教材,写法极为与众不同)
34. ★S. G. Krantz, H. R. Parks, A primer of real analytic functions, second edition, Birkhäuser, 2002(难得的一本实解析函数著作)
35. S. G. Krantz, H. R. Parks, The implicit function theorem: history, theory, and applications, Birkhäuser, 2002(很好的数学分析参考书)
36. P. Shanahan, The Atiyah-Singer index theorem, Springer-Verlag, 1978(指标定理的标准著作)
37. ★C. Chley, Theory of Lie groups, Princeton university press, 1999(李群经典著作)
38. R. J. Walker, Algebraic curves, Springer-Verlag, 1978(很好的代数曲线引论,使用初等方法, 通俗易懂)
39. ★R. C. Gunning, Lectures on Riemann surfaces, Princeton university press, 1966(研究生黎曼面经典教材)
40. ★R. C. Gunning, Lectures on vector bundles over Riemann surfaces, Princeton university press, 1967(黎曼面上向量丛的经典教材)
41. ★R. Narasimhan, Analysis on real and complex manifolds, Elsevier science publishers B. V., 1985(实流形和复流形的经典教材)
42. ★J. W. Milnor, Topology from the differentiable viewpoint, revised edition, Princeton university press, 1997(很薄但极为经典的微分拓扑著作)
43. W. S. Massey, A basic course in algebraic topology, Springer-Verlag, 1991(高年级本科生和研究生的标准代数拓扑教材)
44. F. H. Croom, Basic concepts of algebraic topology, Springer-Verlag, 1978(很好的高年级本科生和研究生代数拓扑教材)
45. J. F. Adams, Lectures on Lie groups, the university of Chicago press, 1982(李群经典教材和参考书)
46. ★S. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, 1972(微分几何经典著作)
47. ★G. de Rham, Differentiable manifolds, Springer-Verlag, 1984(微分流形经典著作,de Rham上同调的权威参考书,英文版由陈省身作序)
48. ★L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill book company, 1973(Ahlfors的名著,研究生复分析的经典教材,作者为首届Fields奖得主)
49. W. Fulton, Algebraic curves, Addison-Wesley publishing company, Inc., 1989(用代数方法讲代数曲线的很好的著作)
50. ★G. Springer, Introduction to Riemann surfaces, Addison-Wesley publishing company, 1957(黎曼面经典教材)
51. ★A. W. Knapp, Lie groups beyond an introduction, Birkhäuser, 1996(李群、李代数及其表示理论的高级教材和参考书)
52. ★J. W. Milnor, Morse theory, Princeton university press, 1963(莫尔斯理论的标准著作)
53. G. E. Bredon, Topology and geometry, Springer-Verlag, 1993(很好的研究生代数拓扑教材)
54. ★P. R. Halmos, A Hilbert space problems book(这本据说以前出过,建议再出)
55. ★J. B. Garnett, Bounded analytic functions, Academic press, 1981(研究生函数论高级教材,非常经典)
56. R. M. Range, Holomorphic functions and integral representations in several complex variables, GTM 108, Springer-Verlag, 1986(这书好象出过,建议再出)
57. ★M. Spivak, A Comprehensive Introduction to Differential Geometry, vol.1-5, third edition, Publish or Perish, Inc., 1999(非常全面的微分几何经典著作)
58. D. Mumford, The red book of varieties and schemes, second edition (expanded), Springer, 1999(很好的研究生代数几何入门教材)
59. P. L. Duren, The theory of Hp spaces, Academic press, 1970(解析函数论方面的经典著作)
60. ★R. Courant, D. Hilbert, Methods of mathematical physics, Interscience publishers, 1989(偏微分方程经典著作)
61. R. Narasimhan, Compact Riemann surfaces, Birkhäuser, 1992(很好的紧黎曼面著作)
62. ★M. J. Greenberg, J. R. Harper, Algebraic topology: a first course, Benjamin/Cummings Pub. Co., 1981(很好的研究生代数拓扑教材)
63. P. R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, second edition, Chelsea Publishing Company, 1998(希尔伯特空间的经典著作)
64. S. Bochner, W. T. Martin, Several complex variables, Princeton university press, 1948.(多复变教材)
前一篇:[转载]图像处理中各种微分算子
后一篇:[转载]数学的三大核心领域之二