微流控/微流体合成纳米颗粒与纳米脂质体套装

标签:
微流控纳米颗粒微流控纳米脂质体微流控压力泵混合芯片 |
分类: 微流控芯片 |
http://www.techusci.com/UploadFiles/2021-03/369/16169239133857099.jpg
高效合成纳米颗粒/纳米脂质体
简单可用的微流控系统
生物医学应用
套装的多用途性
微流体纳米颗粒合成套装包括用于合成具有良好单分散性,高通量和可重现性的纳米颗粒的所有微流体组件包含高精密压力控制器和芯片。该套装可用于合成单分散直径小于200 μm的PLGA纳米颗粒。通过更换不同规格的微流控芯片,同时保持微流控设备不变,您还可以合成单分散直径更小如10 nm的纳米颗粒。
基于快速准确的OB1流量控制器和鞘液流微流控芯片,与传统的实验宏观实验相比,该套装解决方案缩短了纳米颗粒的合成时间和减少了试剂消耗。
微流体纳米粒子合成
标准的微流控纳米颗粒合成套装包含两通道压力控制器OB1 MK3+,压力通道泵送利用微流体动力流聚焦来实现纳米颗粒合成过程中所需的两种化学溶液。该鞘流纳米颗粒合成允许受控的纳米沉淀。流体反应的稳定性和动力学直接取决于微流体通道中的每种流体流速。
通过多个低流量传感器MFS或BFS,可以测量和调节管路中的液体流量。OB1 MK3+流量控制器是鞘流聚焦的最佳解决方案,因为它是完全无脉冲的,而对于标准的广泛使用的注射泵却具有很大的脉冲流动。
微流控纳米沉淀技术可以实现良好的通量、单分散性以及可调的粒径,并且通常可以更好地控制纳米颗粒的合成。
多功能套装可确保不同组件之间的具有良好的兼容性,允许即插即用的方法,由单个定制化软件控制,并可用于其他不同的实验。该微流控纳米颗粒合成套装既适合初学者,也适合专家用户。
http://www.techusci.com/UploadFiles/2021-03/369/16169241733304075.jpg
微流控纳米颗粒合成套装包含:
1、OB1 MK3+流量控制器
2、2个MFS流量传感器
3、2个储液池
4、1个微流控芯片
5、所需配件:PTFE导管、过滤器、接头连接器等
6、ESI操作软件
为什么使用微流体产生纳米颗粒?
由于可精细调节微流体的流动性,使用微流体技术合成纳米颗粒是降低纳米颗粒直径分散性的好方法。非常快的动力学对于例如合成聚合物纳米颗粒的结晶和沉淀过程也是非常重要的。
此外,微流体技术是减少纳米颗粒合成所需的潜在有价值样品的一种方法。
总而言之,就时间、产率和分散性而言,使用微流体技术合成纳米颗粒比宏观的传统实验合成更加有效。由于微流控芯片已经小型化,因此,可以在更复杂的实验平台中实施纳米粒子合成组分,以执行复杂且多功能的集成过程。
http://www.techusci.com/UploadFiles/2021-03/369/16169241449661177.jpg
PLGA纳米粒子:(A)在PEG修饰的PLGA纳米粒子中化学偶联或化学治疗剂的简单封装。(B)PLGA纳米粒子的TEM图。Scale bar: 100 nm [1]
[1] Banerjee D, Harfouche R, Sengupta S. Nanotechnology-mediated targeting of tumor angiogenesis. Vasc Cell. 2011 Jan 31, 3(1), 3
应用
微流体鞘液连续流动纳米沉淀原理
已经显示,微流体技术对于合成具有可调形状和尺寸的有机和无机纳米粒子特别有用[1]。您可以使用微流控纳米颗粒合成套装实现“自下而上”的纳米颗粒合成方法,该方法通常包括三个阶段:由聚合单体组成的纳米颗粒成核,通过更多单体的聚集而使核生长并最终达到平衡[2-3]。与传统的宏观实验合成相比,微流体合成纳米颗粒具有更好的产率和更好的可调节性[4]。
以PLGA纳米沉淀为例,PLGA单体溶解在有机溶剂中,并芯片的中间通道。与表面活性剂混合的水溶液注入到芯片的鞘流通道中,以聚焦PLGA流体流。通过扩散形成浓度梯度和PLGA纳米颗粒沉淀,因为PLGA分子不溶于水[5]。
还已经使用微流控技术合成了其他纳米颗粒,例如用于表面等离子共振(SPR)的金属纳米颗粒[6]和 聚二乙炔纳米颗粒[7]。
1. Ma, J., et al., Controllable synthesis of functional
nanoparticles by microfluidic platforms for
2. Karnik, R., et al., Microfluidic platform for controlled
synthesis of polymeric nanoparticles. Nano
3. Lababidi, N., Sigal, V., Koenneke, A., Schwarzkopf, K., Manz,
A., & Schneider, M. (2019).
4. Visaveliya, N. and J.M. Köhler, Single-step microfluidic
synthesis of various nonspherical polymer nanoparticles via in situ
assembling: dominating role of
5. Donno, R., Gennari, A., Lallana, E., De La Rosa, J. M. R.,
D’Arcy, R., Treacher, K., Hill, K., Ashford, M., & Tirelli, N.
(2017). Nanomanufacturing through microfluidic-
6. Boken, J., D. Kumar, and S. Dalela, Synthesis of
Nanoparticles for Plasmonics Applications: A Microfluidic Approach.
Synthesis and Reactivity in Inorganic, Metal-
7. Baek, S., et al., Nanoscale diameter control of sensory
polydiacetylene nanoparticles on microfluidic chip for enhanced
fluorescence signal. Sensors and Actuators
配置您的微流体纳米颗粒和纳米脂质体产生套装
微流控纳米颗粒/纳米脂质体合成套装是高度可定制的,可以采用不同的微流控芯片合成不同规格的纳米颗粒或纳米脂质体。例如,微流控芯片合成后的流体通道更长或有更大的反应空间。
鞘液流芯片的材质有PMMA或COP两种材料,这两种材料都是光学透明的,并且与大多数的纳米颗粒合成协议相兼容。
此外,如果需要用到负压的流体控制,您可以在现有的套装设备里面升级您的流量控制器OB1,将其升级到OB1 DUAL正压和负压功能,同时您还可以选择不同规格的储液池如从1.5 mL Eppendorf管到100 mL玻璃瓶。当然,您还可以选择科式流量传感器BFS来代替MFS,以进一步改善流量控制。
微流控人字形玻璃混合芯片
http://www.techusci.com/UploadFiles/2021-03/369/16169251459053221.jpg
人字型混合器玻璃芯片是一种可用于通过人字形通道进行最佳混合液体的有用工具。采用1/4-28UNF螺纹端口和对应的接头,可允许您在一秒钟内将该芯片连接到您的实验装置!
该通用型玻璃芯片通过减少扩散所需的长度并增加溶质在流体之间传输的可能性,从而提供了一种快速混合两种流体的方法。
这种人字形芯片使用方便、经济可靠,可应用于您的所有实验:
高强度光学透明玻璃
标准显微镜载玻片尺寸(25×75 mm)
标准1/4-28UNF螺纹端口
易于处理
只需使用1/4-28UNF接头配件(可用于外径1/16英寸的导管)将芯片连接到您的装置即可。
工作原理与应用
人字形混合器通过诱导混沌流的形成,在低雷诺数条件下显示加速混合。
人字形混合器芯片微通道底部具有不对称的人字形凹槽的特定图案,该凹槽能够产生螺旋流和用于混合两种液体的混乱搅拌。
流经微通道的流体的混合具有很多的应用,例如化学反应中所用试剂溶液的均质化。
最近,这种人字形混合器芯片已经在脂质体(封闭的磷脂囊泡)的产生中取得了重要的进步。Cheung等人(Int J Pharma 2019)确实首次报道了使用人字形混合器芯片产生稳定且均匀的(100 nm)聚乙二醇化脂质体。他们研究了不同配方(水溶液、初始脂质浓度、脂质成分和组分)和工艺参数的影响。
与其他微流控设备相比,该混合器芯片显示出更高的通量,更快的混合和更小的洗脱。