矩阵的运算及其运算规则

标签:
noip竞赛信息学竞赛 |
分类: 信息学竞赛 |
今天清北学堂信息学金牌教研团队给大家汇总了一下矩阵的运算
一、矩阵的加法与减法
1、运算规则 设矩阵
https://5b0988e595225.cdn.sohucs.com/images/20180329/70642bc54e2546e8a3cf47275ff2f32d.jpg
则
https://5b0988e595225.cdn.sohucs.com/images/20180329/87a502e84ff44f0b90f677d6fb98b5b1.jpg
清北学堂信息学金牌教研团队提醒,两个矩阵相加减,即它们相同位置的元素相加减!注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.
2、运算性质(假设运算都是可行的)
满足交换律和结合律
交换律
https://5b0988e595225.cdn.sohucs.com/images/20180329/29c7db1d802e408e8eaf779649c1098d.jpg
;
结合律
https://5b0988e595225.cdn.sohucs.com/images/20180329/39eed88f770f47e6a45b3fa116e97086.jpg
.
二、矩阵与数的乘法
1、运算规则
数
https://5b0988e595225.cdn.sohucs.com/images/20180329/8d4770f5d85d4f6aad7d6e2fd369b173.jpg
乘矩阵A,就是将数
https://5b0988e595225.cdn.sohucs.com/images/20180329/8d4770f5d85d4f6aad7d6e2fd369b173.jpg
乘矩阵A中的每一个元素,记为
https://5b0988e595225.cdn.sohucs.com/images/20180329/6326d73d0a414ebb89e8c9f1f3f84f98.jpg
或
https://5b0988e595225.cdn.sohucs.com/images/20180329/10547f3457f54364bc47a8bcc6afd246.jpg
. 特别地,称
https://5b0988e595225.cdn.sohucs.com/images/20180329/b45fec4f56554cafb90eb2a80fc2ab10.jpg
称为
https://5b0988e595225.cdn.sohucs.com/images/20180329/997a678b6589470994bd0d72f5b5ed95.jpg
的负矩阵.
2、运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.典型例题例6.5.1 已知两个矩阵
https://5b0988e595225.cdn.sohucs.com/images/20180329/b750690c4b23440993fad5949650e656.jpg
满足矩阵方程
https://5b0988e595225.cdn.sohucs.com/images/20180329/a297a4fbac90442688a2f115c0f0f0ff.jpg
,求未知矩阵
https://5b0988e595225.cdn.sohucs.com/images/20180329/2c98a894116c498abbb3f1f165ff4b85.jpg
.解 由已知条件知
https://5b0988e595225.cdn.sohucs.com/images/20180329/fd882dc74f544ad78941a97c420a9a0b.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/a50ab583c8b74142b59670769bcf2e2f.jpg
三、矩阵与矩阵的乘法
1、运算规则 设
https://5b0988e595225.cdn.sohucs.com/images/20180329/997a678b6589470994bd0d72f5b5ed95.jpg
,
https://5b0988e595225.cdn.sohucs.com/images/20180329/9bf4e7ec435d4399a8926051b7415fde.jpg
,则A与B的乘积
https://5b0988e595225.cdn.sohucs.com/images/20180329/2c4f75ab5e0447a4bc999a6205e0af79.jpg
是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即
https://5b0988e595225.cdn.sohucs.com/images/20180329/fde91d2450f74845bfd518a5d61e3755.jpg
. (2) C的第
https://5b0988e595225.cdn.sohucs.com/images/20180329/d9430f19d01142c7bae33ce012926f4b.jpg
行第
https://5b0988e595225.cdn.sohucs.com/images/20180329/e4db04d751754537ac3ebbcb81d39740.jpg
列的元素
https://5b0988e595225.cdn.sohucs.com/images/20180329/5fc4dd6bcf444e80ad96a062ca844705.jpg
由A的第
https://5b0988e595225.cdn.sohucs.com/images/20180329/d9430f19d01142c7bae33ce012926f4b.jpg
行元素与B的第
https://5b0988e595225.cdn.sohucs.com/images/20180329/e4db04d751754537ac3ebbcb81d39740.jpg
列元素对应相乘,再取乘积之和.典型例题例6.5.2 设矩阵
https://5b0988e595225.cdn.sohucs.com/images/20180329/aec53f6b5df3470594205c78c7b3e547.jpg
计算
https://5b0988e595225.cdn.sohucs.com/images/20180329/55742348b44a437ca1bd77dc533bbb7c.jpg
解
https://5b0988e595225.cdn.sohucs.com/images/20180329/c8a7ab4c1043465ca39f47a653b2d26a.jpg
是
https://5b0988e595225.cdn.sohucs.com/images/20180329/49010d38249549cd89a271ec72940a63.jpg
的矩阵.设它为
https://5b0988e595225.cdn.sohucs.com/images/20180329/9844fb87143b4ab4abf44a172e45106e.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/142e247091d44be581cae9f928ff29b4.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/7146c1529bb24215ab74e262431cc6d4.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/100bf2313d014bcab642466ad448245b.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/9844fb87143b4ab4abf44a172e45106e.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/142e247091d44be581cae9f928ff29b4.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/7146c1529bb24215ab74e262431cc6d4.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/633e252970474671abb68c7073668d67.jpg
想一想:设列矩阵
https://5b0988e595225.cdn.sohucs.com/images/20180329/150aecacc5a04bc982993352757008a7.jpg
,行矩阵
https://5b0988e595225.cdn.sohucs.com/images/20180329/01a2ceab75f8429287662c9323bada39.jpg
,
https://5b0988e595225.cdn.sohucs.com/images/20180329/c8a7ab4c1043465ca39f47a653b2d26a.jpg
和
https://5b0988e595225.cdn.sohucs.com/images/20180329/dc2e8ef6623b45cab353bf5eff85b67e.jpg
的行数和列数分别是多少呢
https://5b0988e595225.cdn.sohucs.com/images/20180329/33c45ca7a96b401798dc9ed852ad6ac1.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/c8a7ab4c1043465ca39f47a653b2d26a.jpg
是3×3的矩阵,
https://5b0988e595225.cdn.sohucs.com/images/20180329/dc2e8ef6623b45cab353bf5eff85b67e.jpg
是1×1的矩阵,即
https://5b0988e595225.cdn.sohucs.com/images/20180329/dc2e8ef6623b45cab353bf5eff85b67e.jpg
只有一个元素.课堂练习 1、设
https://5b0988e595225.cdn.sohucs.com/images/20180329/0a74c371ecd04cefada16b27179eb60b.jpg
,
https://5b0988e595225.cdn.sohucs.com/images/20180329/b2d4eb11b4f14512bb95a7ae83873f8d.jpg
,求
https://5b0988e595225.cdn.sohucs.com/images/20180329/c8a7ab4c1043465ca39f47a653b2d26a.jpg
.
2、在第1道练习题中,两个矩阵相乘的顺序是A在左边,B在右边,称为A左乘B或B右乘A.如果交换顺序,让B在左边,A在右边,即A右乘B,运算还能进行吗?请算算试试看.并由此思考:两个矩阵应当满足什么条件,才能够做乘法运算.
3、设列矩阵
https://5b0988e595225.cdn.sohucs.com/images/20180329/150aecacc5a04bc982993352757008a7.jpg
,行矩阵
https://5b0988e595225.cdn.sohucs.com/images/20180329/01a2ceab75f8429287662c9323bada39.jpg
,求
https://5b0988e595225.cdn.sohucs.com/images/20180329/c8a7ab4c1043465ca39f47a653b2d26a.jpg
和
https://5b0988e595225.cdn.sohucs.com/images/20180329/dc2e8ef6623b45cab353bf5eff85b67e.jpg
,比较两个计算结果,能得出什么结论吗?
4、设三阶方阵
https://5b0988e595225.cdn.sohucs.com/images/20180329/31d79242d02041489a78d848668ecbbb.jpg
,三阶单位阵为
https://5b0988e595225.cdn.sohucs.com/images/20180329/5f5a3c5679c44c72aac5423af2e6f11f.jpg
,试求https://5b0988e595225.cdn.sohucs.com/images/20180329/9a40afb22c0d47319a402908930dc75e.jpg,并将计算结果与A比较,看有什么样的结论.
解: 第1题
https://5b0988e595225.cdn.sohucs.com/images/20180329/23e89555408d480296b4fe95cb2e0196.jpg
. 第2题 对于
https://5b0988e595225.cdn.sohucs.com/images/20180329/0a74c371ecd04cefada16b27179eb60b.jpg
,
https://5b0988e595225.cdn.sohucs.com/images/20180329/b2d4eb11b4f14512bb95a7ae83873f8d.jpg
. 求https://5b0988e595225.cdn.sohucs.com/images/20180329/c8a7ab4c1043465ca39f47a653b2d26a.jpg是有意义的,而是无意义的.
清北学堂信息学金牌教研团队结论
结论1 只有在下列情况下,两个矩阵的乘法才有意义,或说乘法运算是可行的:左矩阵的列数=右矩阵的行数.
第3题
https://5b0988e595225.cdn.sohucs.com/images/20180329/c8a7ab4c1043465ca39f47a653b2d26a.jpg是矩阵,
是
的矩阵.
https://5b0988e595225.cdn.sohucs.com/images/20180329/2efaff237f6e46429d8c5d9a8b13f8e3.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/b83163617c4e47f9816b3be1eea1377e.jpg
.
https://5b0988e595225.cdn.sohucs.com/images/20180329/f0469901b5b94f18aca510a5a07bc56e.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/ac890bb534914129b89fe47921ebe6de.jpg
结论2 在矩阵的乘法中,必须注意相乘的顺序.即使在https://5b0988e595225.cdn.sohucs.com/images/20180329/b74c649ce3624d36874d0d8ca0f73060.jpg成立.可见矩阵乘法不满足交换律.
第4题 计算得:https://5b0988e595225.cdn.sohucs.com/images/20180329/97f8c30036b34d1e9e78d3f7b56270ae.jpg
.
结论3 方阵A和它同阶的单位阵作乘积,结果仍为A,即
https://5b0988e595225.cdn.sohucs.com/images/20180329/97f8c30036b34d1e9e78d3f7b56270ae.jpg
. 单位阵在矩阵乘法中的作用相当于数1在我们普通乘法中的作用.典型例题例6.5.3 设
https://5b0988e595225.cdn.sohucs.com/images/20180329/dc2e8ef6623b45cab353bf5eff85b67e.jpg
.解
https://5b0988e595225.cdn.sohucs.com/images/20180329/23472de7e2c84eaf9283e86c64178054.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/be13d4fa3f92427593f0cfdff33574df.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/ba66dd894a5541f3a2d06616abd914d0.jpg
.
https://5b0988e595225.cdn.sohucs.com/images/20180329/e970d34f438e47ebb0e224a73ed6e929.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/bd10bc467ff04ef1bdef9a9a34b8ac10.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/881b54b0488b402682806a2c1a2c9745.jpg
结论4 两个非零矩阵的乘积可以是零矩阵.由此若https://5b0988e595225.cdn.sohucs.com/images/20180329/8d328e50f0954661bf05a1bfc545ab65.jpg的结论.
例6.5.4 利用矩阵的乘法,三元线性方程组
https://5b0988e595225.cdn.sohucs.com/images/20180329/6ec978f9ae94425894bdb0fff5cdd644.jpg
可以写成矩阵的形式
https://5b0988e595225.cdn.sohucs.com/images/20180329/afac16add7a5482cac54b045d8fc22a4.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/3c98a3f4c37b45e592ad6da51ecec5e6.jpg
=
https://5b0988e595225.cdn.sohucs.com/images/20180329/a6ea9e91904443f191df7408a8716905.jpg
若记系数、未知量和常数项构成的三个矩阵分别为
https://5b0988e595225.cdn.sohucs.com/images/20180329/3898d92b98b0475186b297d1fbb33f5a.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/afac16add7a5482cac54b045d8fc22a4.jpg
,
https://5b0988e595225.cdn.sohucs.com/images/20180329/b3f214030148410ca3337228d3716995.jpg
,
https://5b0988e595225.cdn.sohucs.com/images/20180329/26109dd0102a4491a06072eb44009016.jpg
, 则线性方程组又可以简写为矩阵方程的形式:https://5b0988e595225.cdn.sohucs.com/images/20180329/d2febb0a155f45e4a68cb4547fb214cb.jpg
2、运算性质(假设运算都是可行的)
(1) 结合律
https://5b0988e595225.cdn.sohucs.com/images/20180329/1d45802c40a14a1d94e31db900280b67.jpg
. (2) 分配律
https://5b0988e595225.cdn.sohucs.com/images/20180329/f58ffb22ed004dedb70cd4f293af9f4b.jpg
(左分配律);
https://5b0988e595225.cdn.sohucs.com/images/20180329/307db16a84784172ac40148e8c61d186.jpg
(右分配律). (3)
https://5b0988e595225.cdn.sohucs.com/images/20180329/a439a1b26ea740e083eb8412ef20e45a.jpg
3、方阵的幂定义:设A是方阵,https://5b0988e595225.cdn.sohucs.com/images/20180329/fba43933bd17470fa345c671c98971bf.jpg,
https://5b0988e595225.cdn.sohucs.com/images/20180329/0960f77f98404a79a5d78e3ee21fda7f.jpg
显然,记号https://5b0988e595225.cdn.sohucs.com/images/20180329/b04b645a0707496d9f782999e9ecf700.jpg个A的连乘积.
下面是有清北学堂信息学金牌教研团队给大家总结的矩阵的转置
四、矩阵的转置
1、定义
定义:将矩阵A的行换成同序号的列所得到的新矩阵称为矩阵A的转置矩阵,记作
https://5b0988e595225.cdn.sohucs.com/images/20180329/0ac77b7dba2043069b1662148c61db50.jpg
或
https://5b0988e595225.cdn.sohucs.com/images/20180329/8543f8e002fe48a4bcadc57af10d91be.jpg
. 例如,矩阵
https://5b0988e595225.cdn.sohucs.com/images/20180329/0a74c371ecd04cefada16b27179eb60b.jpg
的转置矩阵为https://5b0988e595225.cdn.sohucs.com/images/20180329/b642d99cfaf84feeb851cede82f13e80.jpg
.2、运算性质(假设运算都是可行的)
(1) https://5b0988e595225.cdn.sohucs.com/images/20180329/e1700f17fcc44295b96160232d1e830f.jpg
(2) https://5b0988e595225.cdn.sohucs.com/images/20180329/8c0b427ea0a34f179f87c8825690957d.jpg
(3)https://5b0988e595225.cdn.sohucs.com/images/20180329/f594de0b051846ca9492ed6726dd0242.jpg
(4)https://5b0988e595225.cdn.sohucs.com/images/20180329/961dc80356754d9990d4924ab6799a52.jpg
,https://5b0988e595225.cdn.sohucs.com/images/20180329/f24f95f9156c4e029aa0f4abd84d874f.jpg
是常数.2、运算性质(假设运算都是可行的)
(1) https://5b0988e595225.cdn.sohucs.com/images/20180329/e1700f17fcc44295b96160232d1e830f.jpg
(2)https://5b0988e595225.cdn.sohucs.com/images/20180329/8c0b427ea0a34f179f87c8825690957d.jpg
(3)https://5b0988e595225.cdn.sohucs.com/images/20180329/f594de0b051846ca9492ed6726dd0242.jpg
(4)https://5b0988e595225.cdn.sohucs.com/images/20180329/961dc80356754d9990d4924ab6799a52.jpg
,https://5b0988e595225.cdn.sohucs.com/images/20180329/f24f95f9156c4e029aa0f4abd84d874f.jpg
是常数.典型例题https://5b0988e595225.cdn.sohucs.com/images/20180329/1b8ebbf1774d4962b5cb7babd55c7f79.jpg
验证运算性质:
https://5b0988e595225.cdn.sohucs.com/images/20180329/0b6badb20004470ba0ffb52989b7246b.jpg
解
https://5b0988e595225.cdn.sohucs.com/images/20180329/6f3459569c244f75a073d4f34e32d00d.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/dc77e1c48b7c403a95043b52b0532473.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/9af76a91717348ed91d8dd49f726082c.jpg
而
https://5b0988e595225.cdn.sohucs.com/images/20180329/8ebdf47892a148b5830ac853518a106c.jpg
所以
https://5b0988e595225.cdn.sohucs.com/images/20180329/8501300afff247718f67768ee8f9b9d8.jpg
.
定义:如果方阵满足https://5b0988e595225.cdn.sohucs.com/images/20180329/88f61a4a0a234978836d40d8f323b0e8.jpg,则称A为对称矩阵.
对称矩阵的特点是:它的元素以主对角线为对称轴对应相等.
五、方阵的行列式
1、定义
定义:由方阵A的元素所构成的行列式(各元素的位置不变),称为方阵A的行列式,记作
https://5b0988e595225.cdn.sohucs.com/images/20180329/ff5b0b3fa00e4456b2e22c5cd537a7a0.jpg
或
https://5b0988e595225.cdn.sohucs.com/images/20180329/6bf75d43f3a04929a3a4ddd9ecaab996.jpg
2、运算性质 (1)
https://5b0988e595225.cdn.sohucs.com/images/20180329/171dc75fd564406a8243d7cfe25d4b2b.jpg
(行列式的性质) (2)
https://5b0988e595225.cdn.sohucs.com/images/20180329/9bf786bf1e134bfbb5638b6573b6c3e2.jpg
,特别地:
https://5b0988e595225.cdn.sohucs.com/images/20180329/80ad40aa56554cf3924c7d6879fd705e.jpg
(3)
https://5b0988e595225.cdn.sohucs.com/images/20180329/1867e7db860b467383a7a8d2a1665a2a.jpg
(
https://5b0988e595225.cdn.sohucs.com/images/20180329/f24f95f9156c4e029aa0f4abd84d874f.jpg
是常数,A的阶数为n)思考:设A为
https://5b0988e595225.cdn.sohucs.com/images/20180329/aca2d92fcbce49d49d4013ca1608c3bc.jpg
阶方阵,那么
https://5b0988e595225.cdn.sohucs.com/images/20180329/61f62c837b104d6da8e29167a06e1ef6.jpg
的行列式
https://5b0988e595225.cdn.sohucs.com/images/20180329/fbfc89b61b2a49928359b6bfcb1c0417.jpg
与A的行列式
https://5b0988e595225.cdn.sohucs.com/images/20180329/ff5b0b3fa00e4456b2e22c5cd537a7a0.jpg
之间的关系为什么不是
https://5b0988e595225.cdn.sohucs.com/images/20180329/af9131d92c8846c39156ccd927ccf69f.jpg
,而是
https://5b0988e595225.cdn.sohucs.com/images/20180329/1867e7db860b467383a7a8d2a1665a2a.jpg
? 不妨自行设计一个二阶方阵,计算一下
https://5b0988e595225.cdn.sohucs.com/images/20180329/a8d8c3c24e544377935e4e0e0b01658f.jpg
和
https://5b0988e595225.cdn.sohucs.com/images/20180329/53385859ad204b2ea2e0976691f75e3b.jpg
. 例如
https://5b0988e595225.cdn.sohucs.com/images/20180329/0b0332b9a2674063aef332ca7c8be781.jpg
,则
https://5b0988e595225.cdn.sohucs.com/images/20180329/5ebf46d63bd740159a43eb5cf841c537.jpg
. 于是
https://5b0988e595225.cdn.sohucs.com/images/20180329/56f68cd044cb4b4e8caab5c30b260aef.jpg
,而
https://5b0988e595225.cdn.sohucs.com/images/20180329/4e88b588e77f4c5b86e0a064ef8a2fb8.jpg
https://5b0988e595225.cdn.sohucs.com/images/20180329/058556ce573148c9812d5b9c613175ec.jpg
.思考:设
https://5b0988e595225.cdn.sohucs.com/images/20180329/345c9b102ef94caaa94b3f87e2e9e570.jpg
,有几种方法可以求
https://5b0988e595225.cdn.sohucs.com/images/20180329/af149bd0e434425a8150d86f626514e4.jpg
?解
https://5b0988e595225.cdn.sohucs.com/images/20180329/c8a7ab4c1043465ca39f47a653b2d26a.jpg
,得到一个二阶方阵,再求其行列式. 方法二:先分别求行列式
https://5b0988e595225.cdn.sohucs.com/images/20180329/9bb5546df6dc4db2b7fd64e90795cad4.jpg,再取它们的乘积.
更多的NOIP信息学竞赛资讯请关注:信息学竞赛(noipnoi)