数字百科:斐波拉契数列
标签:
股票 |
分类: 戈壁的读书笔记 |
斐波拉契数列的简介 “斐波那契数列”(Fibonacci Sequences)的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abaci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。 斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34…… 这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} (√5表示5的算术平方根) (19世纪法国数学家敏聂(Jacques Phillipe Marie Binet 1786-1856) 很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。 斐波拉契数列之闻名,可能还跟美国悬疑作家丹·布朗有关,他在他的小说《达芬奇密码》之中巧妙地运用了该数列。
其实,我国现行的高中教材中提及了杨辉三角,斐波拉契数列可在其中寻得。
斐波拉契数列的出现 13世纪初,欧洲最好的数学家是斐波拉契;他写了一本叫做《算盘书》的著作,是当时欧洲最好的数学书。书中有许多有趣的数学题,其中最有趣的是下面这个题目:
“如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第3个月裏,又能开始生1对小兔子,假定在不发生死亡的情况下,由1对初生的兔子开始,1年后能繁殖成多少对兔子?”
斐波拉契把推算得到的头几个数摆成一串:1,1,2,3,5,8……
这串数里隐含着一个规律:从第3个数起,后面的每个数都是它前面那两个数的和。而根据这个规律,只要作一些简单的加法,就能推算出以后各个月兔子的数目了。
于是,按照这个规律推算出来的数,构成了数学史上一个有名的数列。大家都叫它“斐波拉契数列”,又称“兔子数列”。这个数列有许多奇特的的性质,例如,从第3个数起,每个数与它后面那个数的比值,都很接近于0.618,正好与大名鼎鼎的“黄金分割律”相吻合。人们还发现,连一些生物的生长规律,在某种假定下也可由这个数列来刻画呢。
斐氏本人对这个数列并没有再做进一步的探讨。直到十九世纪初才有人详加研究,1960年左右,许多数学家对斐波拉契数列和有关的现象非常感到兴趣,不但成立了斐氏学会,还创办了相关刊物,其后各种相关文章也像斐氏的兔子一样迅速地增加。
斐波拉契数列的存在 甚至可以说,斐波拉契数列无处不在,以下仅举几条常见的例子:
■1.杨辉三角对角线上各数之和构成斐波拉契数列 .
■2.多米诺牌(可以看作一个2×1大小的方格)完全覆盖一个n×2的棋盘,覆盖的方案数等于斐波拉契数列。
■3.从蜜蜂的繁殖来看,雄蜂只有母亲,没有父亲,因为蜂后产的卵,受精的孵化为雌蜂,未受精的孵化为雄峰。人们在追溯雄峰的祖先时,发现一只雄峰的第n代祖先的数目刚好就是斐波拉契数列的第n项Fn。
■4.钢琴的13个半音阶的排列完全与雄蜂第六代的排列情况类似,说明音调也与斐波拉契数列有关。
■5.自然界中一些花朵的花瓣数目符合于斐波拉契数列,也就是说在大多数情况下,一朵花花瓣的数目都是3,5,8,13,21,34,……(有6枚是两套3枚;有4枚可能是基因突变)。
■6.如果一根树枝每年长出一根新枝,而长出的新枝两年以后,每年也长出一根新枝,那么历年的树枝数,也构成一个斐波拉契数列.
斐波拉契数列与黄金分割
斐波拉契数列与黄金分割有什么关系呢?经研究发现,相邻两个斐波拉契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n-1)/f(n)-→0.618…。由于斐波拉契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的斐波拉契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
不仅这个由1,1,2,3,5....开始的"斐波拉契数"是这样,随便选两个整数,然后按照斐波拉契数的规律排下去,两数间比也是会逐渐逼近黄金比的.
比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887…… (后一项与前一项之比1.6180339887…… )
还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。
如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。
如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。
斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。
斐波那契数列别名
斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。
一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对;
两个月后,生下一对小兔民数共有两对;
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;
------
依次类推可以列出下表:
经过月数:0 1 2 3 4 5 6 7 8 9 10 11 12
兔子对数:1 1 2 3 5 8 13 21 34 55 89 144 233
表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2)n](n=1,2,3.....)
在杨辉三角中隐藏着斐波那契数列
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
……
过第一行的“1”向左下方做45度斜线,之后做直线的平行线,将每条直线所过的数加起来,即得一数列1、1、2、3、5、8、……
http://s14/middle/4fe32d0eh8dda9764984d&690
斐波那契数与植物花瓣
3………………………百合和蝴蝶花
5………………………蓝花耧斗菜、金凤花、飞燕草
8………………………翠雀花
13………………………金盏
21………………………紫宛
34、55、89……………雏菊
斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。
http://s15/middle/4fe32d0eh8dda9831b58e&690
如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。
========================================================================================
应用斐波那契数列在股票价格上的预测分析:
F(1)=1
我们看软件列出沪市截止到这个月的全景图:
我把历史上显著的顶底点依次列出
90年 12月
92年 5月
93年 2月
94年
94年
95年
96年
97年
98年
99年
-------------------------------------------------------------------------------第2轮牛市结束
02年
04年
05年
----------------------------------------------------------------------------熊市结束
05年
07年
07年

加载中…