波利亚(Eeorge Polya)“怎样解题表”——“四步解题法”程序
(2011-06-08 23:51:40)
标签:
未知数已知数付老师数学学习方法怎样解题杂谈 |
分类: 学习方法 |
第一步、弄清问题——你必须弄清问题
未知数是什么?已知数据是什么?条件是什么?满足条件是否可能?要确定未知数,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?
画张图,引入适当的符号。把条件的各个部分分开,你能否把它们写出来?
第二步、拟定计划一一找出已知数与未知数之间的联系。如果找不出直接的联系,你可能不得不考虑辅助问题。你应该最终得出一个求解的计划。
你以前见过它吗?你是否见过相同的问题而形式稍有不同?
你是否知道与此有关的问题?你是否知道一个可能用得上的定理?
看着未知数,试想出一个具有相同未知数或相似未知数的熟悉的问题?。
这里有一个与你现在的问题有关,且早已解决的问题。
你能不能利用它?你能利用它的结果吗?你能利用它的方法吗?为了能利用它,你是否应该引入某些辅助元素?
你能不能重新叙述这个问题?能不能用不同的方法重新叙述它?
回到定义去。
如果你不能解决所提出的问题,可先解决一个与此有关的问题。你能不能想出一个更容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分,这样对于未知数能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你能不能想出适于确定未知数的其它数据?如果需要的话,你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?
第三步、实现计划——实行你的计划
实现你的求解计划,检验每一步骤。
你能否清楚地看出这一步骤是正确的?你能否证明这一步骤是正确的?
第四步、回顾——验算所得到的解
你能否检验这个论证?你能否用别的方法导出这个结果?你能不能一下子看出它来?
你能否把结果或方法用于其他的问题?