加载中…
个人资料
  • 博客等级:
  • 博客积分:
  • 博客访问:
  • 关注人气:
  • 获赠金笔:0支
  • 赠出金笔:0支
  • 荣誉徽章:
正文 字体大小:

The future of work未来的工作(译稿)

(2017-09-02 13:52:54)
标签:

人工智能

未来的工作

译文

分类: 人文教育

Anthony GoldbloomFrom TED.COM-TALKS


安东尼·勾布伦 演讲, 吕嘉健译


吕案:这个演讲是我在AMES学习英文时的一个内容,我之所以翻译出来,主要是思考及那些未来的孩子,当然首先是为了我的孙女。我的英文翻译能力肯定很幼稚,而且是初试锋芒,并不自信,只是引用一个标本,给我的读者参考,以期引起对这个问题的关注。


本年初,我买了一本如今在世界引起轰动的著作《未来简史》,它的作者是一个以色列教授,在这本著作里,他富有预见性地指出:未来20-30年里,人类将会出现最大的社会分裂危机:未来人类的工作将大部分被人工智能AIArtificial Intelligence)取代。那时候大部分人将成为多余人,只剩下少数高级精英作为创造者管理这个世界和处理新的复杂情况,而且这些精英特别是属于精通计算机程序,科技发展的科技-人文精英。今天的世界人类已经解决了大部分难题,包括粮食、医疗和环境问题,现在对于人类来说,最大的难题是多数人将成为“无用人”,将来甚至连教师、律师、医生、军人等等都不需要了,这些都会被AI所取代。如果未来的工作者不具备高级精英的能力,都将列入被淘汰之列。


这位作者叫赫拉利,他的这本书被翻译成几十种文字,在世界范围内广泛传播。他本人也在年初到了中国,做了多场的巡回演讲,在中国也引起热烈反响。


未来的雇员将被彻底淘汰,在现在已经显出了很多端倪。有很多道理决定了资本家绝对不愿意雇佣人工而愿意使用人工智能机器:人太矫情了,太自恋了,会有种种借口偷懒,开小差,有事假、病假、产假、旅行假、年假、长工假等等;年年要加人工,要为他买保险,付工伤医疗费;不如他意,还要罢工,等等。资本家早就讨厌透顶他的雇员了。越是民主制度和现代化的工作场所,资本家越是被动,雇员阶级越是矫情,难以伺候。所以,资本家最欢迎人工智能机器。


对于这个问题,其实科技界和未来学者、社会学家早已经在研究了,只是一般人都正陶醉在吃喝玩乐之中,在微信的信息娱乐中自得其乐。但是西方发达国家的政府都在研究这个问题:他们在为很快到来的大量“无用人”的存在在寻找对策。有人提出:减少工作时数,给予适当的工资报酬,制造大量的游戏娱乐方式,让“无用人”整天消遣度日。其实在1995年,据说在美国召开了一个高级精英的秘密会议,商量将来对那些“无用人”采取如何人道毁灭的方法——这是否属实,不敢肯定。有些乐观者则预言:将来这大量的“无用人”就生活在互相服务和互相娱乐的世界里。


对于这个这么富有挑战性的难题,大多数普通人很难理解其中的挑战性。所有人的“三觀”将会被彻底颠覆,不再会考虑什么励志的心灵鸡汤了,没用,人口之中属于高级智商的人群十分稀少,你逃不过注定的命运。即使现在高等教育扩大化或曰高等教育大众化只是一个迷幻药,也无法使一般人明白始终存在着一个“赢家通吃”的分层定律,读了博士也是白读。将来的年轻人,究竟具备什么样的智商和受教育的能力,才可以成为高级精英的一份子,这真是我们这些家长和教育工作者现在需要动动脑筋未雨绸缪的了。是为序。


请仔细读读这篇不长的演讲稿,有兴趣者请同时读读英文原件。



So this is my niece. Her name is Yahli. She is nine months old. Her mum is a doctor, and her dad is a lawyer. By the time Yahli goes to college, the jobs her parents do are going to look dramatically different.


这是我的侄女。她的名字是 Yahli。她只有9个月大。她的妈妈是一个医生,她的爸爸是一个律师。等到 Yahli将来上大学的时候,我们将会看到,像她父母这样的工作,将会发生戏剧性的巨变。


In 2013, researchers at Oxford University did a study on the future of work. They concluded that almost one in every two jobs have a high risk of being automated by machines. Machine learning is the technology that's responsible for most of this disruption. It's the most powerful branch of artificial intelligence. It allows machines to learn from data and mimic some of the things that humans can do. My company, Kaggle, operates on the cutting edge of machine learning. We bring together hundreds of thousands of experts to solve important problems for industry and academia. This gives us a unique perspective on what machines can do, what they can't do and what jobs they might automate or threaten.


2013年,牛津大学的研究人员做了一项关于未来就业的研究。他们得出结论:每两个工作中几乎有一个将会有被机器自动化取代的风险。而机器学习这种技术应对这种颠覆负主要责任。它是人工智能最强有力的分支。它让机器从现有数据中学习,并模仿人类的所作所为。我的公司 Kaggle,专注于研究机器学习的最前沿发展。我们汇集了成千上万的专家,去解决工业界和学术界的重要问题。因此,这给了我们一个独特的视角来观察,机器可以做什么,不可以做什么,然后,哪些工作将可能会受到自动化取代的威胁。


Machine learning started making its way into industry in the early '90s. It started with relatively simple tasks. It started with things like assessing credit risk from loan applications, sorting the mail by reading handwritten characters from zip codes. Over the past few years, we have made dramatic breakthroughs. Machine learning is now capable of far, far more complex tasks. In 2012, Kaggle challenged its community to build an algorithm that could grade high-school essays. The winning algorithms were able to match the grades given by human teachers. Last year, we issued an even more difficult challenge. Can you take images of the eye and diagnose an eye disease called diabetic retinopathy? Again, the winning algorithms were able to match the diagnoses given by human ophthalmologists.


机器学习是在90年代初进入业界的。一开始,它只是执行一些相对简单的任务。它开始参与的事情像评估贷款申请的信用风险,通过识别手写的邮政编码来检索邮件。在过去几年里,我们取得了突破性的进展。现在,机器学习可以完成非常复杂的任务。在2012年, Kaggle公司挑战当地社区,设计了一个计算机程序来评判高中作文的等级。那个获胜的程序对作文评判的等级,居然和真正老师评出的等级相符。去年,我们给出了一道更难的挑战。你能从拍摄出的眼睛图像中诊断出糖尿病性视网膜病变吗?再一次,获胜的程序给出的诊断和眼科医生的诊断相符。


Now, given the right data, machines are going to outperform humans at tasks like this. A teacher might read 10,000 essays over a 40-year career. An ophthalmologist might see 50,000 eyes. A machine can read millions of essays or see millions of eyes within minutes. We have no chance of competing against machines on frequent, high-volume tasks.


现在,类似这样的任务,只要给定正确的数据,机器判断和执行的性能和成效将完全优于人类。一位老师在40年的职业生涯中,可能审阅一万篇作文。一个眼科医生大概可以检查5万只眼睛。但在短短几分钟之内,机器可以审阅百万篇文章或检查数百万只眼睛。对于频繁、大批量的任务,我们没有机会与机器抗衡。


But there are things we can do that machines can't do. Where machines have made very little progress is in tackling novel situations. They can't handle things they haven't seen many times before. The fundamental limitations of machine learning is that it needs to learn from large volumes of past data. Now, humans don't. We have the ability to connect seemingly disparate threads to solve problems we've never seen before.


但有些事情我们可以做,而机器却无能为力。机器在解决新情况方面进展甚微。它们还不能处理之前未曾反复接触的事情。机器学习根本的局限性在于,它需要从大量过去的数据中学习。人类则不然。我们有一种能力去连接各种看似毫不相关的线索,从而去解决之前从未见过的问题。


Percy Spencer was a physicist working on radar during World War II, when he noticed the magnetron was melting his chocolate bar. He was able to connect his understanding of electromagnetic radiation with his knowledge of cooking in order to invent -- any guesses? -- the microwave oven.


帕西·斯宾塞是上个世纪的一个物理学家,在二战时他研究雷达的工作,某次他注意到磁控管正在融化他的巧克力棒。他从对电磁辐射的理解联想到了烹饪,因此发明了——猜猜是什么?——微波炉。


Now, this is a particularly remarkable example of creativity. But this sort of cross-pollination happens for each of us in small ways thousands of times per day. Machines cannot compete with us when it comes to tackling novel situations, and this puts a fundamental limit on the human tasks that machines will automate.


这是个创造力特别杰出的例子。但这种跨界转型,每天正以难以觉察的方式在我们身边发生成千上万次。当涉及到新情况的时候,机器无法与我们竞争,这将使机器自动化需要取代人类的各种任务时从根本上受到限制。


So what does this mean for the future of work? The future state of any single job lies in the answer to a single question: To what extent is that job reducible to frequent, high-volume tasks, and to what extent does it involve tackling novel situations? On frequent, high-volume tasks, machines are getting smarter and smarter. Today they grade essaysthey diagnose certain diseases. Over coming years, they're going to conduct our audits, and they're going to read boilerplate from legal contracts. Accountants and lawyers are still needed. They're going to be needed for complex tax structuring, for pathbreaking litigation. But machines will shrink their ranks and make these jobs harder to come by.


那么这对于未来的工作意味着什么?未来任何一个工作之状态完全取决于一个问题:这种工作在多大程度上可以简化为频繁的、大批量的任务?以及在多大程度上涉及处理新的情况?对于那些频繁的、大批量的任务,机器变得越来越智能。今天它们可以评判作文,诊断某些疾病。再过几年,它们将可以进行审计,将能审阅法律合同样本。尽管会计师和律师还是需要的,但他们只需要研究复杂的税收结构,或开创性的诉讼。但机器将会缩小他们的等级和使到这些工作更艰难去获得,增加未来人们的就业难度。


Now, as mentioned, machines are not making progress on novel situations. The copy behind a marketing campaign needs to grab consumers' attention. It has to stand out from the crowd. Business strategy means finding gaps in the market, things that nobody else is doing. It will be humans that are creating the copy behind our marketing campaigns, and it will be humans that are developing our business strategy.


如上所述,机器自动化在处理新情况方面并没有取得进展。营销文案需要抓住消费者的注意力,脱颖而出是一个关键。商业策略意味着在市场上找到缺口和空白,找到还没有人去做的事情。人类仍然将是市场活动营销文案的创造者,而且人类才能推动商业战略的发展。


So Yahli, whatever you decide to do, let every day bring you a new challenge. If it does, then you will stay ahead of the machines.


所以Yahli,无论你将来决定做什么,让每一天都带给你新的挑战。如果是那样,那么你将会保持领先于机器自动化。


Thank you.

谢谢!

(Applause掌声)

0

阅读 收藏 喜欢 打印举报/Report
  

新浪BLOG意见反馈留言板 欢迎批评指正

新浪简介 | About Sina | 广告服务 | 联系我们 | 招聘信息 | 网站律师 | SINA English | 产品答疑

新浪公司 版权所有