实数系统的公理化
随起来很是好笑,无穷小微积分教材给全国高校传统微积分教材提供了实数系统的公理化。
传统微积分
教材需要不需要公理化?糊涂下去是死路一条。
请见本文附件。
袁萌 陈启清 12月10日
附件:
无穷小微积分教材的结束语摘要
Chapter 1. The axioms for the real numbers come in three sets: the Algebraic Axioms, the Order Axioms, and the Completeness Axiom. All the familiar facts about the real numbers can be proved using only these axioms.
EPILOGUE
905
I. ALGEBRAIC AXIOMS FOR THE REAL NUMBERS
A Closure laws 0 and 1 are real numbers. If a and b are real numbers, then so are a + b, ab, and -a. If a is a real number and a # 0, then 1/a is a real number. B Commutative laws a + b = b + a ab = ba. C Associative laws a + (b + c) = (a + b) + c a(bc) = (ab)c.
0 Identity Jaws
E Inverse laws
F Distributive law
DEFINITION
O+a=a
a+(-a)=O
1·a =a.
If a # 0, a ·- = 1. a a • (b + c) = ab + ac.
The positive integers are the real numbers 1, 2 = 1 + 1, 3 = 1 + 1 + 1, 4 = 1 + 1 + 1 + 1, and so on.
II. ORDER AXIOMS FOR THE REAL NUMBERS
A 0 < 1. B Transitive law If a < b and b < c then a < c. C Trichotomy law Exactly one of the relations a < b, a = b, b < a, holds. 0 Sum law If a < b, then a + c < b + c.
E Product law If a < b and 0 < c, then ac < be.
F Root axiom For every real number a > 0 and every positive integer n, there is a real number b > 0 such that b" = a.
Ill. COMPLETENESS AXIOM
加载中,请稍候......