K-理论是什么?
(2019-04-03 16:49:10)K-理论是什么?
袁萌
附件:K-理论导引(英文原文PDF电子版)
An Inroduction to K-theory
Eric M. Friedlander∗
Department of Mathematics, Northwestern University, Evanston, USA
Lectures given at the School on Algebraic K-theory and its Applications Trieste, 14 - 25 May 2007
LNS0823001
∗eric@math.northwestern.edu
Contents
0 Introduction 5
1 K0(−), K1(−),
and K2(−)
1.1 Algebraic K0
of rings
1.2 Topological K0
1.3 Quasi-projective Varieti . 10
1.4 Algebraic vector bundles . . . . .. . 12
1.5 Examples of Algebraic Vector Bundles. 13
1.6 Picard Group Pic(X) . . . . . . . 14
1.7 K0 of Quasi-projective Varieties . . . 15
1.8 K1 of rings . . . . . .. . . 16
1.9 K2 of rings . . . . . . . . . . . . . 17
2 Classifying spaces and higher K-theory 19
2.1 Recollections of homotopy theory . . . . . . . . 19
2.2 BG . . . . . .
2.3 Quillen’s plus
construction .
2.4 Abelian and exact categories . . .. . 23
2.5 The S−1S
construction . .
2.6 Simplicial sets and the Nerve of a Category . . . . 26
2.7 Quillen’s Q-constructio . . . 28
3 Topological K-theory 29
3.1 The
Classifying space BU ×Z .
3.2 Bott periodicity . . . 32
3.3 Spectra and Generalized Cohomology Theories . . . . . . . . 33
3.4 Skeleta and
Postnikov towers .
3.5 The Atiyah-Hirzebruch Spectral sequence . . . . 37
3.6 K-theory Operations . . . .. 39
3.7 Applications . . . . . . . . . . . . . . . . . 41
4 Algebraic K-theory and Algebraic Geometry 42 4.1 Schemes . . . . . . . . 42
4.2 Algebraic
cycles . . . . .
4.3 Chow Groups . . . . . . . . 46
4.4 Smooth
Varieties . . . . . . . .
4.5 Chern classes and Chern character . . .. . . . 51
4.6 Riemann-Roch .
. . . . . . . . . .
5 Some Dicult Problems 55
5.1 K∗(Z) . . . . . . . . . 55
5.2 Bass Finiteness Conjecture . . . . . 57
5.3 Milnor
K-theory . . .
5.4 Negative K-groups . . . . . . . . . 59
5.5 Algebraic
versus topological vector bundles . . . .
5.6 K-theory with nite coecients . .. 60
5.7 Etale K-t. . . . 62
5.8 Integral conjectures . . . . . 63
5.9 K-theory and Quadratic Forms . . . . . . . . . 65
6 Beilinson’s vision partially fullled 65 6.1 Motivation . . . . . . 65
6.2 Statement of conjectur. . 66
6.3 Status of Conjectures . . . 67
6.4 The Meaning of the Conjectures . . . 69
6.5 Etale
cohomology . . . .
6.Voevodsky’s sites . . . . . . . . . . . . . . . . .. . . . 74
References 75
An Introduction to K-theory 5
(全文请见“无穷小微积分”网站)